Search results
Results From The WOW.Com Content Network
Solving them as a system of two simultaneous equations finds the points which belong to both shapes, which is the intersection. The equations below were solved using Maple . This method has applications in computational geometry , graphics rendering , shape modeling , physics-based modeling , and related types of computational 3d simulations.
We obtain the distribution of the property i.e. a given two dimensional situation by writing discretized equations of the form of equation (3) at each grid node of the subdivided domain. At the boundaries where the temperature or fluxes are known the discretized equation are modified to incorporate the boundary conditions.
The q-line (depicted in blue in Figure 1) intersects the point of intersection of the feed composition line and the x = y line and has a slope of q / (q - 1), where the parameter q denotes mole fraction of liquid in the feed. For example, if the feed is a saturated liquid, q = 1 and the slope of the q-line is infinite (drawn as a vertical line ...
The application of MacCormack method to the above equation proceeds in two steps; a predictor step which is followed by a corrector step. Predictor step: In the predictor step, a "provisional" value of u {\displaystyle u} at time level n + 1 {\displaystyle n+1} (denoted by u i p {\displaystyle u_{i}^{p}} ) is estimated as follows
The equation of a line is given by = +. The equation of the normal of that line which passes through the point P is given = +. The point at which these two lines intersect is the closest point on the original line to the point P. Hence:
Let S 1 be the selling price of wheat and S 2 be the selling price of barley, per hectare. If we denote the area of land planted with wheat and barley by x 1 and x 2 respectively, then profit can be maximized by choosing optimal values for x 1 and x 2. This problem can be expressed with the following linear programming problem in the standard form:
The transfer time of a body moving between two points on a conic trajectory is a function only of the sum of the distances of the two points from the origin of the force, the linear distance between the points, and the semimajor axis of the conic. [2]
[1] [8] In this method, a time derivative of the dependent variable is added to Laplace’s equation. Finite differences are then used to approximate the spatial derivatives, and the resulting system of equations is solved by MOL. It is also possible to solve elliptical problems by a semi-analytical method of lines. [9]