When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Particle in a ring - Wikipedia

    en.wikipedia.org/wiki/Particle_in_a_ring

    The case of a particle in a one-dimensional ring is an instructive example when studying the quantization of angular momentum for, say, an electron orbiting the nucleus. The azimuthal wave functions in that case are identical to the energy eigenfunctions of the particle on a ring.

  3. Semicircular potential well - Wikipedia

    en.wikipedia.org/wiki/Semicircular_potential_well

    If a particle is confined to the motion of an entire ring ranging from 0 to , the particle is subject only to a periodic boundary condition (see particle in a ring). If a particle is confined to the motion of − π 2 {\textstyle -{\frac {\pi }{2}}} to π 2 {\textstyle {\frac {\pi }{2}}} , the issue of even and odd parity becomes important.

  4. Gyroradius - Wikipedia

    en.wikipedia.org/wiki/Gyroradius

    Thus, the gyroradius is directly proportional to the particle mass and perpendicular velocity, while it is inversely proportional to the particle electric charge and the magnetic field strength. The time it takes the particle to complete one revolution, called the period , can be calculated to be T g = 2 π r g v ⊥ . {\displaystyle T_{g ...

  5. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    However the total energy of the particle E and its relativistic momentum p are frame-dependent; relative motion between two frames causes the observers in those frames to measure different values of the particle's energy and momentum; one frame measures E and p, while the other frame measures E ′ and p ′, where E ′ ≠ E and p ′ ≠ p ...

  6. Action principles - Wikipedia

    en.wikipedia.org/wiki/Action_principles

    Action principles start with an energy function called a Lagrangian describing the physical system. The accumulated value of this energy function between two states of the system is called the action. Action principles apply the calculus of variation to the action. The action depends on the energy function, and the energy function depends on ...

  7. Classical central-force problem - Wikipedia

    en.wikipedia.org/wiki/Classical_central-force...

    In classical mechanics, the central-force problem is to determine the motion of a particle in a single central potential field.A central force is a force (possibly negative) that points from the particle directly towards a fixed point in space, the center, and whose magnitude only depends on the distance of the object to the center.

  8. Action (physics) - Wikipedia

    en.wikipedia.org/wiki/Action_(physics)

    In physics, action is a scalar quantity that describes how the balance of kinetic versus potential energy of a physical system changes with trajectory. Action is significant because it is an input to the principle of stationary action, an approach to classical mechanics that is simpler for multiple objects. [1]

  9. Density of states - Wikipedia

    en.wikipedia.org/wiki/Density_of_states

    The density of states related to volume V and N countable energy levels is defined as: = = (()). Because the smallest allowed change of momentum for a particle in a box of dimension and length is () = (/), the volume-related density of states for continuous energy levels is obtained in the limit as ():= (()), Here, is the spatial dimension of the considered system and the wave vector.