When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    Gaussian elimination is a useful and easy way to compute the inverse of a matrix. To compute a matrix inverse using this method, an augmented matrix is first created with the left side being the matrix to invert and the right side being the identity matrix. Then, Gaussian elimination is used to convert the left side into the identity matrix ...

  3. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    In mathematics, and in particular linear algebra, the Moore–Penrose inverse ⁠ + ⁠ of a matrix ⁠ ⁠, often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [1] It was independently described by E. H. Moore in 1920, [2] Arne Bjerhammar in 1951, [3] and Roger Penrose in 1955. [4]

  4. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    This method can also be used to compute the rank of a matrix, the determinant of a square matrix, and the inverse of an invertible matrix. The method is named after Carl Friedrich Gauss (1777–1855). To perform row reduction on a matrix, one uses a sequence of elementary row operations to modify the matrix until the lower left-hand corner of ...

  5. Sherman–Morrison formula - Wikipedia

    en.wikipedia.org/wiki/Sherman–Morrison_formula

    The matrix determinant lemma performs a rank-1 update to a determinant. Woodbury matrix identity; Quasi-Newton method; Binomial inverse theorem; Bunch–Nielsen–Sorensen formula; Maxwell stress tensor contains an application of the Sherman–Morrison formula.

  6. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's method. In particular, if either exp {\displaystyle \exp } or log {\displaystyle \log } in the complex domain can be computed with some complexity, then that complexity is ...

  7. Woodbury matrix identity - Wikipedia

    en.wikipedia.org/wiki/Woodbury_matrix_identity

    This is applied, e.g., in the Kalman filter and recursive least squares methods, to replace the parametric solution, requiring inversion of a state vector sized matrix, with a condition equations based solution. In case of the Kalman filter this matrix has the dimensions of the vector of observations, i.e., as small as 1 in case only one new ...

  8. Adjugate matrix - Wikipedia

    en.wikipedia.org/wiki/Adjugate_matrix

    In linear algebra, the adjugate or classical adjoint of a square matrix A, adj(A), is the transpose of its cofactor matrix. [1] [2] It is occasionally known as adjunct matrix, [3] [4] or "adjoint", [5] though that normally refers to a different concept, the adjoint operator which for a matrix is the conjugate transpose.

  9. Inverse iteration - Wikipedia

    en.wikipedia.org/wiki/Inverse_iteration

    In numerical analysis, inverse iteration (also known as the inverse power method) is an iterative eigenvalue algorithm. It allows one to find an approximate eigenvector when an approximation to a corresponding eigenvalue is already known. The method is conceptually similar to the power method. It appears to have originally been developed to ...