When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Membrane potential - Wikipedia

    en.wikipedia.org/wiki/Membrane_potential

    In essence, the Goldman formula expresses the membrane potential as a weighted average of the reversal potentials for the individual ion types, weighted by permeability. (Although the membrane potential changes about 100 mV during an action potential, the concentrations of ions inside and outside the cell do not change significantly.

  3. Goldman equation - Wikipedia

    en.wikipedia.org/wiki/Goldman_equation

    The Goldman–Hodgkin–Katz voltage equation, sometimes called the Goldman equation, is used in cell membrane physiology to determine the resting potential across a cell's membrane, taking into account all of the ions that are permeant through that membrane.

  4. Polarized membrane - Wikipedia

    en.wikipedia.org/wiki/Polarized_membrane

    Mitochondria present in all cells in the human body require a resting membrane potential of the inner mitochondrial membrane to synthesize adenosine triphosphate (ATP). This membrane polarity is established through a series of proton pumps transporting hydrogen ions into the mitochondrion.

  5. Mitochondria associated membranes - Wikipedia

    en.wikipedia.org/wiki/Mitochondria_associated...

    The mitochondria-associated ER membranes (MAMs), play role in cell death modulation. Mitochondrial outer membrane permeabilization (MOMP), is a reason of the higher matrix Ca 2+ levels, which is acts as a trigger for apoptosis. MOMP is the process before apoptosis, which is accompanied to permeability of the inner membrane of the mitochondria ...

  6. Mitochondrial permeability transition pore - Wikipedia

    en.wikipedia.org/wiki/Mitochondrial_permeability...

    The mitochondrial permeability transition pore (mPTP or MPTP; also referred to as PTP, mTP or MTP) is a protein that is formed in the inner membrane of the mitochondria under certain pathological conditions such as traumatic brain injury and stroke.

  7. Intracellular pH - Wikipedia

    en.wikipedia.org/wiki/Intracellular_pH

    This membrane potential is ultimately what allows for the mitochondria to generate large quantities of ATP. [ 17 ] Protons being pumped from the mitochondrial matrix into the intermembrane space as the electron transport chain runs, lowering the pH of the intermembrane space.

  8. Proton pump - Wikipedia

    en.wikipedia.org/wiki/Proton_pump

    It is an active pump that generates a proton concentration gradient across the inner mitochondrial membrane, because there are more protons outside the matrix than inside. The difference in pH and electric charge (ignoring differences in buffer capacity) creates an electrochemical potential difference that works similar to that of a battery or ...

  9. Electrochemical gradient - Wikipedia

    en.wikipedia.org/wiki/Electrochemical_gradient

    The final step of cellular respiration is the electron transport chain, composed of four complexes embedded in the inner mitochondrial membrane. Complexes I, III, and IV pump protons from the matrix to the intermembrane space (IMS); for every electron pair entering the chain, ten protons translocate into the IMS.