When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Membrane potential - Wikipedia

    en.wikipedia.org/wiki/Membrane_potential

    In essence, the Goldman formula expresses the membrane potential as a weighted average of the reversal potentials for the individual ion types, weighted by permeability. (Although the membrane potential changes about 100 mV during an action potential, the concentrations of ions inside and outside the cell do not change significantly.

  3. Intracellular pH - Wikipedia

    en.wikipedia.org/wiki/Intracellular_pH

    This membrane potential is ultimately what allows for the mitochondria to generate large quantities of ATP. [ 17 ] Protons being pumped from the mitochondrial matrix into the intermembrane space as the electron transport chain runs, lowering the pH of the intermembrane space.

  4. Polarized membrane - Wikipedia

    en.wikipedia.org/wiki/Polarized_membrane

    Mitochondria present in all cells in the human body require a resting membrane potential of the inner mitochondrial membrane to synthesize adenosine triphosphate (ATP). This membrane polarity is established through a series of proton pumps transporting hydrogen ions into the mitochondrion.

  5. Mitochondrial permeability transition pore - Wikipedia

    en.wikipedia.org/wiki/Mitochondrial_permeability...

    When Δψ is lost, protons and some molecules are able to flow across the outer mitochondrial membrane uninhibited. [7] [8] Loss of Δψ interferes with the production of adenosine triphosphate (ATP), the cell's main source of energy, because mitochondria must have an electrochemical gradient to provide the driving force for ATP production.

  6. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    The energy transferred by electrons flowing through this electron transport chain is used to transport protons across the inner mitochondrial membrane, in a process called electron transport. This generates potential energy in the form of a pH gradient and the resulting electrical potential across this membrane.

  7. Goldman equation - Wikipedia

    en.wikipedia.org/wiki/Goldman_equation

    The Goldman–Hodgkin–Katz voltage equation, sometimes called the Goldman equation, is used in cell membrane physiology to determine the resting potential across a cell's membrane, taking into account all of the ions that are permeant through that membrane.

  8. Adenosine triphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_triphosphate

    This pumping generates a proton motive force that is the net effect of a pH gradient and an electric potential gradient across the inner mitochondrial membrane. Flow of protons down this potential gradient – that is, from the intermembrane space to the matrix – yields ATP by ATP synthase. [23] Three ATP are produced per turn.

  9. Mitochondria associated membranes - Wikipedia

    en.wikipedia.org/wiki/Mitochondria_associated...

    The mitochondria-associated ER membranes (MAMs), play role in cell death modulation. Mitochondrial outer membrane permeabilization (MOMP), is a reason of the higher matrix Ca 2+ levels, which is acts as a trigger for apoptosis. MOMP is the process before apoptosis, which is accompanied to permeability of the inner membrane of the mitochondria ...