When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Jeffreys prior - Wikipedia

    en.wikipedia.org/wiki/Jeffreys_prior

    For example, the Jeffreys prior for the distribution mean is uniform over the entire real line in the case of a Gaussian distribution of known variance. Use of the Jeffreys prior violates the strong version of the likelihood principle , which is accepted by many, but by no means all, statisticians.

  3. Normal-inverse-Wishart distribution - Wikipedia

    en.wikipedia.org/wiki/Normal-inverse-Wishart...

    In probability theory and statistics, the normal-inverse-Wishart distribution (or Gaussian-inverse-Wishart distribution) is a multivariate four-parameter family of continuous probability distributions. It is the conjugate prior of a multivariate normal distribution with unknown mean and covariance matrix (the inverse of the precision matrix). [1]

  4. Deep image prior - Wikipedia

    en.wikipedia.org/wiki/Deep_Image_Prior

    A reference implementation rewritten in Python 3.6 with the PyTorch 0.4.0 library was released by the author under the Apache 2.0 license: deep-image-prior [3] A TensorFlow-based implementation written in Python 2 and released under the CC-SA 3.0 license: deep-image-prior-tensorflow

  5. Normal-Wishart distribution - Wikipedia

    en.wikipedia.org/wiki/Normal-Wishart_distribution

    In probability theory and statistics, the normal-Wishart distribution (or Gaussian-Wishart distribution) is a multivariate four-parameter family of continuous probability distributions. It is the conjugate prior of a multivariate normal distribution with unknown mean and precision matrix (the inverse of the covariance matrix). [1]

  6. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The simplest case of a normal distribution is known as the standard normal distribution or unit normal distribution. This is a special case when μ = 0 {\textstyle \mu =0} and σ 2 = 1 {\textstyle \sigma ^{2}=1} , and it is described by this probability density function (or density): φ ( z ) = e − z 2 2 2 π . {\displaystyle \varphi (z ...

  7. Prior probability - Wikipedia

    en.wikipedia.org/wiki/Prior_probability

    An informative prior expresses specific, definite information about a variable. An example is a prior distribution for the temperature at noon tomorrow. A reasonable approach is to make the prior a normal distribution with expected value equal to today's noontime temperature, with variance equal to the day-to-day variance of atmospheric temperature, or a distribution of the temperature for ...

  8. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    In this context, the log-normal distribution has shown a good performance in two main use cases: (1) predicting the proportion of time traffic will exceed a given level (for service level agreement or link capacity estimation) i.e. link dimensioning based on bandwidth provisioning and (2) predicting 95th percentile pricing. [94]

  9. Maximum a posteriori estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_a_posteriori...

    Observe that the MAP estimate of coincides with the ML estimate when the prior is uniform (i.e., is a constant function), which occurs whenever the prior distribution is taken as the reference measure, as is typical in function-space applications. When the loss function is of the form