When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    For this reason, the Euler method is said to be a first-order method, while the midpoint method is second order. We can extrapolate from the above table that the step size needed to get an answer that is correct to three decimal places is approximately 0.00001, meaning that we need 400,000 steps.

  3. Euler–Maruyama method - Wikipedia

    en.wikipedia.org/wiki/Euler–Maruyama_method

    In Itô calculus, the Euler–Maruyama method (also simply called the Euler method) is a method for the approximate numerical solution of a stochastic differential equation (SDE). It is an extension of the Euler method for ordinary differential equations to stochastic differential equations named after Leonhard Euler and Gisiro Maruyama. The ...

  4. 1 + 2 + 3 + 4 + ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    One method, along the lines of Euler's reasoning, [12] uses the relationship between the Riemann zeta function and the Dirichlet eta function η(s). The eta function is defined by an alternating Dirichlet series, so this method parallels the earlier heuristics. Where both Dirichlet series converge, one has the identities:

  5. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    This is the Euler method (or forward Euler method, in contrast with the backward Euler method, to be described below). The method is named after Leonhard Euler who described it in 1768. The Euler method is an example of an explicit method. This means that the new value y n+1 is defined in terms of things that are already known, like y n.

  6. Backward Euler method - Wikipedia

    en.wikipedia.org/wiki/Backward_Euler_method

    This differs from the (forward) Euler method in that the forward method uses (,) in place of (+, +). The backward Euler method is an implicit method: the new approximation y k + 1 {\displaystyle y_{k+1}} appears on both sides of the equation, and thus the method needs to solve an algebraic equation for the unknown y k + 1 {\displaystyle y_{k+1}} .

  7. Symplectic integrator - Wikipedia

    en.wikipedia.org/wiki/Symplectic_integrator

    The symplectic Euler method is the first-order integrator with = and coefficients = = Note that the algorithm above does not work if time-reversibility is needed. The algorithm has to be implemented in two parts, one for positive time steps, one for negative time steps.

  8. Explicit and implicit methods - Wikipedia

    en.wikipedia.org/wiki/Explicit_and_implicit_methods

    Forward-Backward Euler method The result of applying both the Forward Euler method and the Forward-Backward Euler method for a = 5 {\displaystyle a=5} and n = 30 {\displaystyle n=30} . In order to apply the IMEX-scheme, consider a slightly different differential equation:

  9. Heun's method - Wikipedia

    en.wikipedia.org/wiki/Heun's_method

    In mathematics and computational science, Heun's method may refer to the improved [1] or modified Euler's method (that is, the explicit trapezoidal rule [2]), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value.