When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    The possible orbital symmetries are listed in the table below. For example, an orbital of B 1 symmetry (called a b 1 orbital with a small b since it is a one-electron function) is multiplied by -1 under the symmetry operations C 2 (rotation about the 2-fold rotation axis) and σ v '(yz) (reflection in the molecular

  3. Kainosymmetry - Wikipedia

    en.wikipedia.org/wiki/Kainosymmetry

    Kainosymmetry also explains the specific properties of the 1s, 2p, 3d, and 4f elements. The 1s elements hydrogen and helium are extremely different from all others, because 1s is the only orbital that is completely unscreened from the nucleus, and there is no other orbital of similar energy for it to hybridise with (it also does not polarise ...

  4. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    The shapes of the first five atomic orbitals are 1s, 2s, 2p x, 2p y, and 2p z.The two colors show the phase or sign of the wave function in each region. Each picture is domain coloring of a ψ(x, y, z) function which depends on the coordinates of one electron.

  5. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    In hydrogen fluoride HF overlap between the H 1s and F 2s orbitals is allowed by symmetry but the difference in energy between the two atomic orbitals prevents them from interacting to create a molecular orbital. Overlap between the H 1s and F 2p z orbitals is also symmetry allowed, and these two atomic orbitals have a small energy separation ...

  6. Term symbol - Wikipedia

    en.wikipedia.org/wiki/Term_symbol

    For example, 1s 2 2s 2 2p 2 3 P 0 represents the ground state of a neutral carbon atom. The superscript 3 indicates that the spin multiplicity 2 S + 1 is 3 (it is a triplet state ), so S = 1; the letter "P" is spectroscopic notation for L = 1; and the subscript 0 is the value of J (in this case J = L − S ).

  7. Electron configuration - Wikipedia

    en.wikipedia.org/wiki/Electron_configuration

    For example, the electron configuration of the neon atom is 1s 2 2s 2 2p 6, meaning that the 1s, 2s, and 2p subshells are occupied by two, two, and six electrons, respectively. Electronic configurations describe each electron as moving independently in an orbital , in an average field created by the nuclei and all the other electrons.

  8. Linear combination of atomic orbitals - Wikipedia

    en.wikipedia.org/wiki/Linear_combination_of...

    The required atomic orbital energies can come from calculations or directly from experiment via Koopmans' theorem. This is done by using the symmetry of the molecules and orbitals involved in bonding, and thus is sometimes called symmetry adapted linear combination (SALC).

  9. Localized molecular orbitals - Wikipedia

    en.wikipedia.org/wiki/Localized_molecular_orbitals

    The localized orbital corresponding to one O-H bond is the sum of these two delocalized orbitals, and the localized orbital for the other O-H bond is their difference; as per Valence bond theory. For multiple bonds and lone pairs, different localization procedures give different orbitals.