When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hamiltonian mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_mechanics

    Hamilton's equations give the time evolution of coordinates and conjugate momenta in four first-order differential equations, ˙ = ˙ = ⁡ ˙ = ⁡ ⁡ ⁡ ˙ = Momentum ⁠ ⁠, which corresponds to the vertical component of angular momentum ⁠ = ⁡ ⁡ ˙ ⁠, is a constant of motion. That is a consequence of the rotational symmetry of the ...

  3. Hamilton's principle - Wikipedia

    en.wikipedia.org/wiki/Hamilton's_principle

    Hamilton's principle states that the true evolution q(t) of a system described by N generalized coordinates q = (q 1, q 2, ..., q N) between two specified states q 1 = q(t 1) and q 2 = q(t 2) at two specified times t 1 and t 2 is a stationary point (a point where the variation is zero) of the action functional [] = ((), ˙ (),) where (, ˙,) is the Lagrangian function for the system.

  4. Hamilton–Jacobi equation - Wikipedia

    en.wikipedia.org/wiki/Hamilton–Jacobi_equation

    In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

  5. Action principles - Wikipedia

    en.wikipedia.org/wiki/Action_principles

    Starting with Hamilton's principle, the local differential Euler–Lagrange equation can be derived for systems of fixed energy. The action in Hamilton's principle is the Legendre transformation of the action in Maupertuis' principle. [18]

  6. Hamiltonian system - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_system

    A Hamiltonian system is a dynamical system governed by Hamilton's equations. In physics, this dynamical system describes the evolution of a physical system such as a planetary system or an electron in an electromagnetic field. These systems can be studied in both Hamiltonian mechanics and dynamical systems theory.

  7. Hamiltonian (control theory) - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_(control_theory)

    Together, the state and costate equations describe the Hamiltonian dynamical system (again analogous to but distinct from the Hamiltonian system in physics), the solution of which involves a two-point boundary value problem, given that there are boundary conditions involving two different points in time, the initial time (the differential ...

  8. William Rowan Hamilton - Wikipedia

    en.wikipedia.org/wiki/William_Rowan_Hamilton

    Numerous other concepts and objects in mechanics, such as Hamilton's principle, Hamilton's principal function, the Hamilton–Jacobi equation, Cayley-Hamilton theorem are named after Hamilton. The Hamiltonian is the name of both a function (classical) and an operator (quantum) in physics, and, in a different sense, a term from graph theory .

  9. Hamiltonian (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_(quantum...

    This equation is the Schrödinger equation. It takes the same form as the Hamilton–Jacobi equation , which is one of the reasons H {\displaystyle H} is also called the Hamiltonian. Given the state at some initial time ( t = 0 {\displaystyle t=0} ), we can solve it to obtain the state at any subsequent time.