When.com Web Search

  1. Ad

    related to: discriminant formula for cubic equation calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    Using the formula relating the general cubic and the associated depressed cubic, this implies that the discriminant of the general cubic can be written as (+). It follows that one of these two discriminants is zero if and only if the other is also zero, and, if the coefficients are real , the two discriminants have the same sign.

  3. Discriminant - Wikipedia

    en.wikipedia.org/wiki/Discriminant

    In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic ...

  4. Resolvent (Galois theory) - Wikipedia

    en.wikipedia.org/wiki/Resolvent_(Galois_theory)

    where is the discriminant, which is a resolvent for the alternating group. In the case of a cubic equation, this resolvent is sometimes called the quadratic resolvent; its roots appear explicitly in the formulas for the roots of a cubic equation.

  5. Resolvent cubic - Wikipedia

    en.wikipedia.org/wiki/Resolvent_cubic

    The resolvent cubic of an irreducible quartic polynomial P(x) can be used to determine its Galois group G; that is, the Galois group of the splitting field of P(x). Let m be the degree over k of the splitting field of the resolvent cubic (it can be either R 4 ( y ) or R 5 ( y ) ; they have the same splitting field).

  6. Cubic field - Wikipedia

    en.wikipedia.org/wiki/Cubic_field

    In the case of a non-cyclic cubic field K this index formula can be combined with the conductor formula D = f 2 d to obtain a decomposition of the polynomial discriminant Δ = i(θ) 2 f 2 d into the square of the product i(θ)f and the discriminant d of the quadratic field k associated with the cubic field K, where d is squarefree up to a ...

  7. Cubic function - Wikipedia

    en.wikipedia.org/wiki/Cubic_function

    The derivative of a cubic function is a quadratic function. A cubic function with real coefficients has either one or three real roots (which may not be distinct); [1] all odd-degree polynomials with real coefficients have at least one real root. The graph of a cubic function always has a single inflection point.

  8. Weierstrass elliptic function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_elliptic_function

    The real part of the discriminant as a function of the square of the nome q on the unit disk. The modular discriminant Δ is defined as the discriminant of the characteristic polynomial of the differential equation ℘ ′ 2 ( z ) = 4 ℘ 3 ( z ) − g 2 ℘ ( z ) − g 3 {\displaystyle \wp '^{2}(z)=4\wp ^{3}(z)-g_{2}\wp (z)-g_{3}} as follows ...

  9. Casus irreducibilis - Wikipedia

    en.wikipedia.org/wiki/Casus_irreducibilis

    Casus irreducibilis (from Latin 'the irreducible case') is the name given by mathematicians of the 16th century to cubic equations that cannot be solved in terms of real radicals, that is to those equations such that the computation of the solutions cannot be reduced to the computation of square and cube roots.