Search results
Results From The WOW.Com Content Network
The dilution in welding terms is defined as the weight of the base metal melted divided by the total weight of the weld metal. For example, if we have a dilution of 0.40, the fraction of the weld metal that came from the consumable electrode is 0.60.
The following formulas can be used to calculate the volumes of solute (V solute) and solvent (V solvent) to be used: [1] = = where V total is the desired total volume, and F is the desired dilution factor number (the number in the position of F if expressed as "1/F dilution factor" or "xF dilution"). However, some solutions and mixtures take up ...
The heat of dilution can be defined from two perspectives: the differential heat and the integral heat. The differential heat of dilution is viewed on a micro scale, which is associated with the process in which a small amount of solvent is added to a large quantity of solution. The molar differential heat of dilution is thus defined as the enthalpy
A serial dilution is the step-wise dilution of a substance in solution, either by using a constant dilution factor, or by using a variable factor between dilutions. If the dilution factor at each step is constant, this results in a geometric progression of the concentration in a logarithmic fashion.
If the solute dissociates in solution, then the number of moles of solute is increased by the van 't Hoff factor, which represents the true number of solute particles for each formula unit. For example, the strong electrolyte MgCl 2 dissociates into one Mg 2+ ion and two Cl − ions, so that if ionization is complete, i = 3 and =, where is ...
In thermochemistry, the enthalpy of solution (heat of solution or enthalpy of solvation) is the enthalpy change associated with the dissolution of a substance in a solvent at constant pressure resulting in infinite dilution. The enthalpy of solution is most often expressed in kJ/mol at constant temperature.
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.
The term molality is formed in analogy to molarity which is the molar concentration of a solution. The earliest known use of the intensive property molality and of its adjectival unit, the now-deprecated molal, appears to have been published by G. N. Lewis and M. Randall in the 1923 publication of Thermodynamics and the Free Energies of Chemical Substances. [3]