Ad
related to: acute angles in right triangle calculator
Search results
Results From The WOW.Com Content Network
A right triangle ABC with its right angle at C, hypotenuse c, and legs a and b,. A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle (1 ⁄ 4 turn or 90 degrees).
The equilateral triangle, with three 60° angles, is acute. The Morley triangle, formed from any triangle by the intersections of its adjacent angle trisectors, is equilateral and hence acute. The golden triangle is the isosceles triangle in which the ratio of the duplicated side to the base side equals the golden ratio. It is acute, with ...
In a right-angled triangle, the sum of the two acute angles is a right angle, that is, 90° or π / 2 radians. Therefore and represent the same ratio, and thus are equal. This identity and analogous relationships between the other trigonometric functions are summarized in the following table.
For example, a right triangle may have angles that form simple relationships, such as 45°–45°–90°. This is called an "angle-based" right triangle. A "side-based" right triangle is one in which the lengths of the sides form ratios of whole numbers, such as 3 : 4 : 5, or of other special numbers such as the golden ratio.
For the angle α, the sine function gives the ratio of the length of the opposite side to the length of the hypotenuse.. To define the sine and cosine of an acute angle , start with a right triangle that contains an angle of measure ; in the accompanying figure, angle in a right triangle is the angle of interest.
Fig. 6 – A short proof using trigonometry for the case of an acute angle. Using more trigonometry, the law of cosines can be deduced by using the Pythagorean theorem only once. In fact, by using the right triangle on the left hand side of Fig. 6 it can be shown that:
In this right triangle: sin A = a/h; cos A = b/h; tan A = a/b. Trigonometric ratios are the ratios between edges of a right triangle. These ratios depend only on one acute angle of the right triangle, since any two right triangles with the same acute angle are similar. [31]
If D = 1, a unique solution exists: γ = 90°, i.e., the triangle is right-angled. If D < 1 two alternatives are possible. If b ≥ c, then β ≥ γ (the larger side corresponds to a larger angle). Since no triangle can have two obtuse angles, γ is an acute angle and the solution γ = arcsin D is unique.