Search results
Results From The WOW.Com Content Network
A better solution, which was proposed by Sellers, [2] relies on dynamic programming. It uses an alternative formulation of the problem: for each position j in the text T and each position i in the pattern P , compute the minimum edit distance between the i first characters of the pattern, P i {\displaystyle P_{i}} , and any substring T j ...
In theoretical computer science, the closest string is an NP-hard computational problem, [1] which tries to find the geometrical center of a set of input strings. To understand the word "center", it is necessary to define a distance between two strings. Usually, this problem is studied with the Hamming distance in mind.
In computer science, the two-way string-matching algorithm is a string-searching algorithm, discovered by Maxime Crochemore and Dominique Perrin in 1991. [1] It takes a pattern of size m, called a “needle”, preprocesses it in linear time O(m), producing information that can then be used to search for the needle in any “haystack” string, taking only linear time O(n) with n being the ...
A string-searching algorithm, sometimes called string-matching algorithm, is an algorithm that searches a body of text for portions that match by pattern. A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet ( finite set ) Σ.
HackerRank categorizes most of their programming challenges into a number of core computer science domains, [3] including database management, mathematics, and artificial intelligence. When a programmer submits a solution to a programming challenge, their submission is scored on the accuracy of their output.
The longest common substrings of a set of strings can be found by building a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it. The figure on the right is the suffix tree for the strings "ABAB", "BABA" and "ABBA", padded with unique string ...
Alternative ()-time solutions were provided by Jeuring (1994), and by Gusfield (1997), who described a solution based on suffix trees. A faster algorithm can be achieved in the word RAM model of computation if the size σ {\displaystyle \sigma } of the input alphabet is in 2 o ( log n ) {\displaystyle 2^{o(\log n)}} .
Ukkonen's 1985 algorithm takes a string p, called the pattern, and a constant k; it then builds a deterministic finite state automaton that finds, in an arbitrary string s, a substring whose edit distance to p is at most k [13] (cf. the Aho–Corasick algorithm, which similarly constructs an automaton to search for any of a number of patterns ...