Ads
related to: paraboloid reflector mirror
Search results
Results From The WOW.Com Content Network
A parabolic (or paraboloid or paraboloidal) reflector (or dish or mirror) is a reflective surface used to collect or project energy such as light, sound, or radio waves. Its shape is part of a circular paraboloid , that is, the surface generated by a parabola revolving around its axis.
Each mirror of the reflector is a sandwich of an aluminum honeycomb, 5 mm plate of AlMgSi alloy, covered with a thin layer of quartz to protect the mirror surface from aging. The mirrors have spherical shape with a curvature corresponding to the position of the plate in the paraboloid reflector. The reflectivity of the mirrors is around 90% ...
The mercury mirror of the Large Zenith Telescope in Canada was the largest liquid-metal mirror ever built. It had a diameter of 6 meters and rotated at a rate of about 8.5 revolutions per minute. It was decommissioned in 2016. [4] This mirror was a test, built for $1 million, but it was not suitable for astronomy because of the test site's weather.
Liquid-mirror telescopes have rotating mirrors that consist of a liquid metal such as mercury or a low-melting alloy of gallium. These mirrors do not solidify and they are used while liquid and rotating. The rotation shapes them into paraboloids that are accurate enough to be used as primary reflectors in telescopes.
The Maltese sound mirror is known locally as "the ear" . The Dungeness mirrors, known colloquially as the "listening ears", consist of three large concrete reflectors built in the 1920s–1930s. Their experimental nature can be discerned by the different shapes of each of the three reflectors: one is a long curved wall about 5 m (16 ft) high by ...
A typical parabolic antenna consists of a metal parabolic reflector with a small feed antenna suspended in front of the reflector at its focus, pointed back toward the reflector. [ 2 ] [ 3 ] The reflector is a metallic surface formed into a paraboloid of revolution and usually truncated in a circular rim that forms the diameter of the antenna ...
All the heliostat mirrors send accurately parallel beams of light into a large paraboloidal reflector which brings them to a precise focus. The mirrors have to be located close enough to the axis of the paraboloid to reflect sunlight into it along lines parallel to the axis, so the field of heliostats has to be narrow.
Newtonian telescope design. A Newtonian telescope is composed of a primary mirror or objective, usually parabolic in shape, and a smaller flat secondary mirror.The primary mirror makes it possible to collect light from the pointed region of the sky, while the secondary mirror redirects the light out of the optical axis at a right angle so it can be viewed with an eyepiece.