Search results
Results From The WOW.Com Content Network
The details of the process vary by species, but the process described here is common. This process starts with a single diploid megasporocyte in the nucleus. This megasporocyte undergoes meiotic cell division to form four cells that are haploid. Three cells die and one that is most distant from the micropyle develops into the megaspore.
A megaspore mother cell, or megasporocyte, is a diploid cell in plants in which meiosis will occur, resulting in the production of four haploid megaspores. At least one of the spores develop into haploid female gametophytes, the megagametophytes. [1] The megaspore mother cell arises within the megasporangium tissue.
During megasporogenesis, a diploid precursor cell, the megasporocyte or megaspore mother cell, undergoes meiosis to produce initially four haploid cells (the megaspores). [1] Angiosperms exhibit three patterns of megasporogenesis: monosporic, bisporic, and tetrasporic , also known as the Polygonum type, the Alisma type, and the Drusa type ...
Ovules are initially composed of diploid maternal tissue, which includes a megasporocyte (a cell that will undergo meiosis to produce megaspores). Megaspores remain inside the ovule and divide by mitosis to produce the haploid female gametophyte or megagametophyte, which also remains inside the ovule. The remnants of the megasporangium tissue ...
In meiotic sporogenesis, a diploid spore mother cell within the sporangium undergoes meiosis, producing a tetrad of haploid spores. In organisms that are heterosporous, two types of spores occur: Microsporangia produce male microspores, and megasporangia produce female megaspores. In megasporogenesis, often three of the four spores degenerate ...
For example, diploid human cells contain 23 pairs of chromosomes including 1 pair of sex chromosomes (46 total), half of maternal origin and half of paternal origin. Meiosis produces haploid gametes (ova or sperm) that contain one set of 23 chromosomes. When two gametes (an egg and a sperm) fuse, the resulting zygote is once again diploid, with ...
When a human germ cell undergoes meiosis, the diploid 46 chromosome complement is split in half to form haploid gametes. After fusion of a male and a female gamete (each containing 1 set of 23 chromosomes) during fertilization , the resulting zygote again has the full complement of 46 chromosomes: 2 sets of 23 chromosomes.
6.In a Haploid life cycle (left) for a short time they have a diploid structure so they can produce spores through meiosis. 7.This is the first stage of a zygote which has just been fertilized by a sperm. 8.The spores released by the diploid structure either express the mothers dominate gene or the fathers recessive gene.