Search results
Results From The WOW.Com Content Network
To create factorial codes, Horace Barlow and co-workers suggested to minimize the sum of the bit entropies of the code components of binary codes (1989). Jürgen Schmidhuber (1992) re-formulated the problem in terms of predictors and binary feature detectors, each receiving the raw data as an input. For each detector there is a predictor that ...
The factorial number system is sometimes defined with the 0! place omitted because it is always zero (sequence A007623 in the OEIS). In this article, a factorial number representation will be flagged by a subscript "!". In addition, some examples will have digits delimited by a colon. For example, 3:4:1:0:1:0! stands for
It is closely related to (or even a special case of) the search for a factorial code of the data, i.e., a new vector-valued representation of each data vector such that it gets uniquely encoded by the resulting code vector (loss-free coding), but the code components are statistically independent.
As the factorial function grows very rapidly, it quickly overflows machine-precision numbers (typically 32- or 64-bits). Thus, factorial is a suitable candidate for arbitrary-precision arithmetic. In OCaml, the Num module (now superseded by the ZArith module) provides arbitrary-precision arithmetic and can be loaded into a running top-level using:
In computer science, a generator is a routine that can be used to control the iteration behaviour of a loop. All generators are also iterators. [1] A generator is very similar to a function that returns an array, in that a generator has parameters, can be called, and generates a sequence of values.
In typical code, these are 1–3 lines long, and a procedure more than 7 lines long is very rare. Something that would idiomatically be expressed with one procedure in another programming language would be written as several words in Factor. [3] Each word takes a fixed number of arguments and has a fixed number of return values.
The number of derangements of a set of size n is known as the subfactorial of n or the n th derangement number or n th de Montmort number (after Pierre Remond de Montmort). Notations for subfactorials in common use include !n, D n, d n, or n¡ . [a] [1] [2] For n > 0 , the subfactorial !n equals the nearest integer to n!/e, where n!
The main disadvantage of the full factorial design is its sample size requirement, which grows exponentially with the number of factors or inputs considered. [6] Alternative strategies with improved computational efficiency include fractional factorial designs , Latin hypercube sampling , and quasi-random sampling techniques .