When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. BLAST (biotechnology) - Wikipedia

    en.wikipedia.org/wiki/BLAST_(biotechnology)

    The open-source software MMseqs is an alternative to BLAST/PSI-BLAST, which improves on current search tools over the full range of speed-sensitivity trade-off, achieving sensitivities better than PSI-BLAST at more than 400 times its speed. [27]

  3. Sequence clustering - Wikipedia

    en.wikipedia.org/wiki/Sequence_clustering

    Determining a representative tertiary structure for each sequence cluster is the aim of many structural genomics initiatives. Sequence clustering algorithms and packages

  4. Nearest-neighbor chain algorithm - Wikipedia

    en.wikipedia.org/wiki/Nearest-neighbor_chain...

    The cluster distances for which the nearest-neighbor chain algorithm works are called reducible and are characterized by a simple inequality among certain cluster distances. The main idea of the algorithm is to find pairs of clusters to merge by following paths in the nearest neighbor graph of the clusters. Every such path will eventually ...

  5. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    In statistics, cluster analysis is the algorithmic grouping of objects into homogeneous groups based on numerical measurements. Model-based clustering [1] based on a statistical model for the data, usually a mixture model.

  6. Complete-linkage clustering - Wikipedia

    en.wikipedia.org/wiki/Complete-linkage_clustering

    The clusters are then sequentially combined into larger clusters until all elements end up being in the same cluster. The method is also known as farthest neighbour clustering. The result of the clustering can be visualized as a dendrogram, which shows the sequence of cluster fusion and the distance at which each fusion took place. [1] [2] [3]

  7. Consensus clustering - Wikipedia

    en.wikipedia.org/wiki/Consensus_clustering

    Consensus clustering is a method of aggregating (potentially conflicting) results from multiple clustering algorithms.Also called cluster ensembles [1] or aggregation of clustering (or partitions), it refers to the situation in which a number of different (input) clusterings have been obtained for a particular dataset and it is desired to find a single (consensus) clustering which is a better ...

  8. Clustering high-dimensional data - Wikipedia

    en.wikipedia.org/wiki/Clustering_high...

    Clustering high-dimensional data is the cluster analysis of data with anywhere from a few dozen to many thousands of dimensions.Such high-dimensional spaces of data are often encountered in areas such as medicine, where DNA microarray technology can produce many measurements at once, and the clustering of text documents, where, if a word-frequency vector is used, the number of dimensions ...

  9. Fuzzy clustering - Wikipedia

    en.wikipedia.org/wiki/Fuzzy_clustering

    Fuzzy clustering (also referred to as soft clustering or soft k-means) is a form of clustering in which each data point can belong to more than one cluster.. Clustering or cluster analysis involves assigning data points to clusters such that items in the same cluster are as similar as possible, while items belonging to different clusters are as dissimilar as possible.