Search results
Results From The WOW.Com Content Network
One particularly distant body is 90377 Sedna, which was discovered in November 2003.It has an extremely eccentric orbit that takes it to an aphelion of 937 AU. [2] It takes over 10,000 years to orbit, and during the next 50 years it will slowly move closer to the Sun as it comes to perihelion at a distance of 76 AU from the Sun. [3] Sedna is the largest known sednoid, a class of objects that ...
The following is a list of Solar System objects by orbit, ordered by increasing distance from the Sun. Most named objects in this list have a diameter of 500 km or more. The Sun, a spectral class G2V main-sequence star; The inner Solar System and the terrestrial planets. 2021 PH27; Mercury. Mercury-crossing minor planets; Venus. Venus-crossing ...
If the Sun–Neptune distance is scaled to 100 metres (330 ft), then the Sun would be about 3 cm (1.2 in) in diameter (roughly two-thirds the diameter of a golf ball), the giant planets would be all smaller than about 3 mm (0.12 in), and Earth's diameter along with that of the other terrestrial planets would be smaller than a flea (0.3 mm or 0. ...
This latter point seems in particular to follow from the astonishing relation which the known six planets observe in their distances from the Sun. Let the distance from the Sun to Saturn be taken as 100, then Mercury is separated by 4 such parts from the Sun. Venus is 4+3=7. The Earth 4+6=10. Mars 4+12=16.
This is a list of Solar System objects by greatest aphelion or the greatest distance from the Sun that the orbit could take it if the Sun and object were the only objects in the universe. It is implied that the object is orbiting the Sun in a two-body solution without the influence of the planets, passing stars, or the galaxy. The aphelion can ...
The average distance between Neptune and the Sun is 4.5 billion km (about 30.1 astronomical units (AU), the mean distance from the Earth to the Sun), and it completes an orbit on average every 164.79 years, subject to a variability of around ±0.1 years. The perihelion distance is 29.81 AU, and the aphelion distance is 30.33 AU.
It had been conjectured that the fixed stars were much farther away than the planets. Sun: Star 3rd century BC — 1609 380 Earth radii (very inaccurate, true=16000 Earth radii) Aristarchus of Samos made a measurement of the distance of the Sun from the Earth in relation to the distance of the Moon from the Earth. The distance to the Moon was ...
A planet's year depends on its distance from its star; the farther a planet is from its star, the longer the distance it must travel and the slower its speed, since it is less affected by its star's gravity. No planet's orbit is perfectly circular, and hence the distance of each from the host star varies over the course of its year.