Search results
Results From The WOW.Com Content Network
Unlike the more familiar coordinate velocity v, proper velocity is synchrony-free [1] (does not require synchronized clocks) and is useful for describing both super-relativistic and sub-relativistic motion. Like coordinate velocity and unlike four-vector velocity, it resides in the three-dimensional slice of spacetime defined by the map frame.
The change μ α, which must be multiplied by cosδ to become a component of the proper motion, is sometimes called the "proper motion in right ascension", and μ δ the "proper motion in declination". [11] If the proper motion in right ascension has been converted by cosδ, the result is designated μ α*.
Even light itself does not have a "velocity" of c in this sense; the total velocity of any object can be expressed as the sum = + where is the recession velocity due to the expansion of the universe (the velocity given by Hubble's law) and is the "peculiar velocity" measured by local observers (with = ˙ () and = ˙ (), the dots indicating a ...
Moreover, in general relativity, velocity is a local notion, and there is not even a unique definition for the relative velocity of a cosmologically distant object. [17] Faster-than-light cosmological recession speeds are entirely a coordinate effect. There are many galaxies visible in telescopes with redshift numbers of 1.4 or higher. All of ...
The branch of physics describing the motion of objects without reference to their cause is called kinematics, while the branch studying forces and their effect on motion is called dynamics. If an object is not in motion relative to a given frame of reference, it is said to be at rest, motionless, immobile, stationary, or to have a constant or ...
The average speed of an object in an interval of time is the distance travelled by the object divided by the duration of the interval; [2] the instantaneous speed is the limit of the average speed as the duration of the time interval approaches zero. Speed is the magnitude of velocity (a vector), which indicates additionally the direction of ...
For a simple example involving only the orientation of two observers, consider two people standing, facing each other on either side of a north-south street. See Figure 2. A car drives past them heading south. For the person facing east, the car was moving to the right. However, for the person facing west, the car was moving to the left.
The linear motion can be of two types: uniform linear motion, with constant velocity (zero acceleration); and non-uniform linear motion, with variable velocity (non-zero acceleration). The motion of a particle (a point-like object) along a line can be described by its position x {\displaystyle x} , which varies with t {\displaystyle t} (time).