When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Maximum subarray problem - Wikipedia

    en.wikipedia.org/wiki/Maximum_subarray_problem

    Maximum subarray problems arise in many fields, such as genomic sequence analysis and computer vision.. Genomic sequence analysis employs maximum subarray algorithms to identify important biological segments of protein sequences that have unusual properties, by assigning scores to points within the sequence that are positive when a motif to be recognized is present, and negative when it is not ...

  3. Subset sum problem - Wikipedia

    en.wikipedia.org/wiki/Subset_sum_problem

    The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset S {\displaystyle S} of integers and a target-sum T {\displaystyle T} , and the question is to decide whether any subset of the integers sum to precisely T {\displaystyle T} . [ 1 ]

  4. Multiple subset sum - Wikipedia

    en.wikipedia.org/wiki/Multiple_subset_sum

    It is a generalization of the subset sum problem. The input to the problem is a multiset of n integers and a positive integer m representing the number of subsets. The goal is to construct, from the input integers, some m subsets. The problem has several variants: Max-sum MSSP: for each subset j in 1,...,m, there is a capacity C j.

  5. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    The unconstrained-optimization solver used to solve (P i) and find x i, such as Newton's method. Note that we can use each x i as a starting-point for solving the next problem (P i+1). The main challenge in proving that the method is polytime is that, as the penalty parameter grows, the solution gets near the boundary, and the function becomes ...

  6. Test functions for optimization - Wikipedia

    en.wikipedia.org/wiki/Test_functions_for...

    The artificial landscapes presented herein for single-objective optimization problems are taken from Bäck, [1] Haupt et al. [2] and from Rody Oldenhuis software. [3] Given the number of problems (55 in total), just a few are presented here. The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and ...

  7. Branch and bound - Wikipedia

    en.wikipedia.org/wiki/Branch_and_bound

    Branch and bound (BB, B&B, or BnB) is a method for solving optimization problems by breaking them down into smaller sub-problems and using a bounding function to eliminate sub-problems that cannot contain the optimal solution. It is an algorithm design paradigm for discrete and combinatorial optimization problems, as well as mathematical ...

  8. Quadratically constrained quadratic program - Wikipedia

    en.wikipedia.org/wiki/Quadratically_constrained...

    Solving the general non-convex case is an NP-hard problem. To see this, note that the two constraints x 1 ( x 1 − 1) ≤ 0 and x 1 ( x 1 − 1) ≥ 0 are equivalent to the constraint x 1 ( x 1 − 1) = 0, which is in turn equivalent to the constraint x 1 ∈ {0, 1}.

  9. Euler–Maruyama method - Wikipedia

    en.wikipedia.org/wiki/Euler–Maruyama_method

    with initial condition X 0 = x 0, where W t denotes the Wiener process, and suppose that we wish to solve this SDE on some interval of time [0, T]. Then the Euler–Maruyama approximation to the true solution X is the Markov chain Y defined as follows: Partition the interval [0, T] into N equal subintervals of width >: