When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Covariance - Wikipedia

    en.wikipedia.org/wiki/Covariance

    The sign of the covariance of two random variables X and Y. In probability theory and statistics, covariance is a measure of the joint variability of two random variables. [1] The sign of the covariance, therefore, shows the tendency in the linear relationship between the variables.

  3. Function of several real variables - Wikipedia

    en.wikipedia.org/wiki/Function_of_several_real...

    The image of a function f(x 1, x 2, …, x n) is the set of all values of f when the n-tuple (x 1, x 2, …, x n) runs in the whole domain of f.For a continuous (see below for a definition) real-valued function which has a connected domain, the image is either an interval or a single value.

  4. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    [a] This means that the function that maps y to f(x) + J(x) ⋅ (y – x) is the best linear approximation of f(y) for all points y close to x. The linear map h → J(x) ⋅ h is known as the derivative or the differential of f at x. When m = n, the Jacobian matrix is square, so its determinant is a well-defined function of x, known as the ...

  5. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.

  6. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    That is, for any two random variables X 1, X 2, both have the same probability distribution if and only if =. [citation needed] If a random variable X has moments up to k-th order, then the characteristic function φ X is k times continuously differentiable on the entire real line.

  7. Gradient - Wikipedia

    en.wikipedia.org/wiki/Gradient

    For any smooth function f on a Riemannian manifold (M, g), the gradient of f is the vector field ∇f such that for any vector field X, (,) =, that is, ((),) = (), where g x ( , ) denotes the inner product of tangent vectors at x defined by the metric g and ∂ X f is the function that takes any point x ∈ M to the directional derivative of f ...

  8. Continuous linear extension - Wikipedia

    en.wikipedia.org/wiki/Continuous_linear_extension

    Closed graph theorem (functional analysis) – Theorems connecting continuity to closure of graphs; Continuous linear operator; Densely defined operator – Function that is defined almost everywhere (mathematics) Hahn–Banach theorem – Theorem on extension of bounded linear functionals

  9. Linear function (calculus) - Wikipedia

    en.wikipedia.org/wiki/Linear_function_(calculus)

    The features of the graph = = + can be interpreted in terms of the variables x and y. The y -intercept is the initial value y = f ( 0 ) = b {\displaystyle y=f(0)=b} at x = 0 {\displaystyle x=0} . The slope a measures the rate of change of the output y per unit change in the input x .

  1. Related searches how to calculate linear expansion of x graph in two variables is defined

    x 1 x 2 c functionx 1 x 2 x n