When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Adjacency matrix - Wikipedia

    en.wikipedia.org/wiki/Adjacency_matrix

    They can, for example, be used to represent sparse graphs without incurring the space overhead from storing the many zero entries in the adjacency matrix of the sparse graph. In the following section the adjacency matrix is assumed to be represented by an array data structure so that zero and non-zero entries are all directly represented in ...

  3. Laplacian matrix - Wikipedia

    en.wikipedia.org/wiki/Laplacian_matrix

    In the matrix notation, the adjacency matrix of the undirected graph could, e.g., be defined as a Boolean sum of the adjacency matrix of the original directed graph and its matrix transpose, where the zero and one entries of are treated as logical, rather than numerical, values, as in the following example:

  4. Adjacency list - Wikipedia

    en.wikipedia.org/wiki/Adjacency_list

    An adjacency list representation for a graph associates each vertex in the graph with the collection of its neighbouring vertices or edges. There are many variations of this basic idea, differing in the details of how they implement the association between vertices and collections, in how they implement the collections, in whether they include both vertices and edges or only vertices as first ...

  5. Seidel adjacency matrix - Wikipedia

    en.wikipedia.org/wiki/Seidel_adjacency_matrix

    In mathematics, in graph theory, the Seidel adjacency matrix of a simple undirected graph G is a symmetric matrix with a row and column for each vertex, having 0 on the diagonal, −1 for positions whose rows and columns correspond to adjacent vertices, and +1 for positions corresponding to non-adjacent vertices.

  6. Degree matrix - Wikipedia

    en.wikipedia.org/wiki/Degree_matrix

    In the mathematical field of algebraic graph theory, the degree matrix of an undirected graph is a diagonal matrix which contains information about the degree of each vertex—that is, the number of edges attached to each vertex. [1]

  7. FKT algorithm - Wikipedia

    en.wikipedia.org/wiki/FKT_algorithm

    The FKT algorithm does such a task for a planar graph G. The orientation it finds is called a Pfaffian orientation. Let G = (V, E) be an undirected graph with adjacency matrix A. Define PM(n) to be the set of partitions of n elements into pairs, then the number of perfect matchings in G is

  8. Minimum rank of a graph - Wikipedia

    en.wikipedia.org/wiki/Minimum_rank_of_a_graph

    The adjacency matrix of an undirected graph is a symmetric matrix whose rows and columns both correspond to the vertices of the graph. Its elements are all 0 or 1, and the element in row i and column j is nonzero whenever vertex i is adjacent to vertex j in the graph.

  9. Prim's algorithm - Wikipedia

    en.wikipedia.org/wiki/Prim's_algorithm

    The adjacency matrix distributed between multiple processors for parallel Prim's algorithm. In each iteration of the algorithm, every processor updates its part of C by inspecting the row of the newly inserted vertex in its set of columns in the adjacency matrix. The results are then collected and the next vertex to include in the MST is ...