Search results
Results From The WOW.Com Content Network
The root locus plots the poles of the closed loop transfer function in the complex s-plane as a function of a gain parameter (see pole–zero plot). Evans also invented in 1948 an analog computer to compute root loci, called a "Spirule" (after "spiral" and "slide rule"); it found wide use before the advent of digital computers.
A pole-zero plot shows the location in the complex plane of the poles and zeros of the transfer function of a dynamic system, such as a controller, compensator, sensor, equalizer, filter, or communications channel. By convention, the poles of the system are indicated in the plot by an X while the zeros are indicated by a circle or O.
The definition, though with the name ’directivity curve’, was used in a 1967 article by Endre Simonyi. [1] This article also defined 'directivity vector' as = + (), where P and Q are the dx/dt and dy/dt differential equations, and i and j are the x and y direction unit vectors.
The s-plane poles and zeros of a 5th-order Chebyshev type II lowpass filter to be approximated as a discrete-time filter The z-plane poles and zeros of the discrete-time Chebyshev filter, as mapped into the z-plane using the matched Z-transform method with T = 1/10 second.
For example, if the feed is a saturated liquid, q = 1 and the slope of the q-line is infinite (drawn as a vertical line). As another example, if the feed is saturated vapor, q = 0 and the slope of the q-line is 0 (a horizontal line). [2] The typical McCabe–Thiele diagram in Figure 1 uses a q-line representing a partially vaporized feed.
On a log–linear plot (logarithmic scale on the y-axis), pick some fixed point (x 0, F 0), where F 0 is shorthand for F(x 0), somewhere on the straight line in the above graph, and further some other arbitrary point (x 1, F 1) on the same graph. The slope formula of the plot is:
A zero-crossing in a line graph of a waveform representing voltage over time. A zero-crossing is a point where the sign of a mathematical function changes (e.g. from positive to negative), represented by an intercept of the axis (zero value) in the graph of the function.
Other examples of zeta functions with multiple zeros are the L-functions of some elliptic curves: these can have multiple zeros at the real point of their critical line; the Birch-Swinnerton-Dyer conjecture predicts that the multiplicity of this zero is the rank of the elliptic curve.