When.com Web Search

  1. Ad

    related to: 3 mod 4 calculation practice sheet worksheet answers pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Quadratic reciprocity - Wikipedia

    en.wikipedia.org/wiki/Quadratic_reciprocity

    Gauss published the first and second proofs of the law of quadratic reciprocity on arts 125–146 and 262 of Disquisitiones Arithmeticae in 1801.. In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers.

  3. Chinese remainder theorem - Wikipedia

    en.wikipedia.org/wiki/Chinese_remainder_theorem

    For each of them, compute the remainder by 4 (the second largest modulus) until getting a number congruent to 3 modulo 4. Then one can proceed by adding 20 = 5 × 4 at each step, and computing only the remainders by 3. This gives 4 mod 4 → 0. Continue 4 + 5 = 9 mod 4 →1. Continue 9 + 5 = 14 mod 4 → 2. Continue 14 + 5 = 19 mod 43.

  4. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    The most direct method of calculating a modular exponent is to calculate b e directly, then to take this number modulo m.Consider trying to compute c, given b = 4, e = 13, and m = 497:

  5. Proofs of quadratic reciprocity - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_quadratic...

    Of the elementary combinatorial proofs, there are two which apply types of double counting.One by Gotthold Eisenstein counts lattice points.Another applies Zolotarev's lemma to (/), expressed by the Chinese remainder theorem as (/) (/) and calculates the signature of a permutation.

  6. Blum integer - Wikipedia

    en.wikipedia.org/wiki/Blum_integer

    In mathematics, a natural number n is a Blum integer if n = p × q is a semiprime for which p and q are distinct prime numbers congruent to 3 mod 4. [1] That is, p and q must be of the form 4t + 3, for some integer t. Integers of this form are referred to as Blum primes. [2] This means that the factors of a Blum integer are Gaussian primes with ...

  7. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.

  8. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    On the other hand, the primes 3, 7, 11, 19, 23 and 31 are all congruent to 3 modulo 4, and none of them can be expressed as the sum of two squares. This is the easier part of the theorem, and follows immediately from the observation that all squares are congruent to 0 (if number squared is even) or 1 (if number squared is odd) modulo 4.

  9. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Time-keeping on this clock uses arithmetic modulo 12. Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus.