When.com Web Search

  1. Ad

    related to: solving equations without solution formula

Search results

  1. Results From The WOW.Com Content Network
  2. Extraneous and missing solutions - Wikipedia

    en.wikipedia.org/wiki/Extraneous_and_missing...

    Because of this, often, the only simple effective way to deal with multiplication by expressions involving variables is to substitute each of the solutions obtained into the original equation and confirm that this yields a valid equation. After discarding solutions that yield an invalid equation, we will have the correct set of solutions.

  3. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.

  4. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    A solution of an equation is often called a root of the equation, particularly but not only for polynomial equations. The set of all solutions of an equation is its solution set. An equation may be solved either numerically or symbolically. Solving an equation numerically means that only numbers are admitted as solutions.

  5. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    The solutions of this equation are called roots of the cubic function defined by the left-hand side of the equation. If all of the coefficients a , b , c , and d of the cubic equation are real numbers , then it has at least one real root (this is true for all odd-degree polynomial functions ).

  6. Abel–Ruffini theorem - Wikipedia

    en.wikipedia.org/wiki/Abel–Ruffini_theorem

    This is the case of the equation = for any n, and the equations defined by cyclotomic polynomials, all of whose solutions can be expressed in radicals. Abel's proof of the theorem does not explicitly contain the assertion that there are specific equations that cannot be solved by radicals.

  7. Quartic equation - Wikipedia

    en.wikipedia.org/wiki/Quartic_equation

    This formula handles repeated roots without problem. Ferrari was the first to discover one of these labyrinthine solutions [citation needed]. The equation which he solved was + + = which was already in depressed form. It has a pair of solutions which can be found with the set of formulas shown above.

  8. Closed-form expression - Wikipedia

    en.wikipedia.org/wiki/Closed-form_expression

    The quadratic formula =. is a closed form of the solutions to the general quadratic equation + + =. More generally, in the context of polynomial equations, a closed form of a solution is a solution in radicals; that is, a closed-form expression for which the allowed functions are only n th-roots and field operations (+,,, /).

  9. Weak formulation - Wikipedia

    en.wikipedia.org/wiki/Weak_formulation

    In a weak formulation, equations or conditions are no longer required to hold absolutely (and this is not even well defined) and has instead weak solutions only with respect to certain "test vectors" or "test functions". In a strong formulation, the solution space is constructed such that these equations or conditions are already fulfilled.