Search results
Results From The WOW.Com Content Network
Bosons are one of the two fundamental particles having integral spinclasses of particles, the other being fermions. Bosons are characterized by Bose–Einstein statistics and all have integer spins. Bosons may be either elementary, like photons and gluons, or composite, like mesons. According to the Standard Model, the elementary bosons are:
The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetic, weak and strong interactions – excluding gravity) in the universe and classifying all known elementary particles.
The Standard Model of particle physics contains 12 flavors of elementary fermions, plus their corresponding antiparticles, as well as elementary bosons that mediate the forces and the Higgs boson, which was reported on July 4, 2012, as having been likely detected by the two main experiments at the Large Hadron Collider (ATLAS and CMS). [1]
Although the electromagnetic force is far stronger than gravity, it tends to cancel itself out within large objects, so over large (astronomical) distances gravity tends to be the dominant force, and is responsible for holding together the large scale structures in the universe, such as planets, stars, and galaxies.
Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation.The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the study of combination of protons and neutrons is called nuclear physics.
Additionally, we know experimentally that the W and Z bosons are massive, but a boson mass term contains the combination e.g. A μ A μ, which clearly depends on the choice of gauge. Therefore, none of the standard model fermions or bosons can "begin" with mass, but must acquire it by some other mechanism.
The name boson was coined by Paul Dirac [3] [4] to commemorate the contribution of Satyendra Nath Bose, an Indian physicist. When Bose was a reader (later professor) at the University of Dhaka, Bengal (now in Bangladesh), [5] [6] he and Albert Einstein developed the theory characterising such particles, now known as Bose–Einstein statistics and Bose–Einstein condensate.
In the Higgs mechanism, the four gauge bosons (of SU(2)×U(1) symmetry) of the unified electroweak interaction couple to a Higgs field. This field undergoes spontaneous symmetry breaking due to the shape of its interaction potential. As a result, the universe is permeated by a non-zero Higgs vacuum expectation value (VEV).