Search results
Results From The WOW.Com Content Network
Metallic curium is annealed in air or in an oxygen atmosphere: [1] Cm + O 2 → CmO 2. Curium(III) hydroxide and curium(III) oxalate are also usually used for this purpose: Cm(OH) 4 → CmO 2 + 2H 2 O Cm(C 2 O 4) 2 → CmO 2 + 2CO 2 + 2CO. Another way is the reaction of curium(III) oxide in an oxygen atmosphere at 650 °C: [2] 2Cm 2 O 3 + O 2 ...
Curium(III) oxide is a compound composed of curium and oxygen with the chemical formula Cm 2 O 3. It is a crystalline solid with a unit cell that contains two curium atoms and three oxygen atoms. The simplest synthesis equation involves the reaction of curium(III) metal with O 2−: 2 Cm 3+ + 3 O 2−---> Cm 2 O 3. [1]
Curium readily reacts with oxygen forming mostly Cm 2 O 3 and CmO 2 oxides, [1] but the divalent oxide CmO is also known. [2] Black CmO 2 can be obtained by burning curium oxalate (Cm 2 (C 2 O 4) 3), nitrate (Cm(NO 3) 3), or hydroxide in pure oxygen. [3] [4] Upon heating to 600–650 °C in vacuum (about 0.01 Pa), it transforms into the whitish ...
Since the metal oxide is a solid structure, both reactions must be done in the same reactor, which leads to a discontinuous production process, carrying out one step after the other. To avoid this stops in the production time, multiple reactors can be arranged to approximate a continuous production process.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
Curium is not currently used as nuclear fuel due to its low availability and high price. [43] 245 Cm and 247 Cm have very small critical mass and so could be used in tactical nuclear weapons, but none are known to have been made. Curium-243 is not suitable for such, due to its short half-life and strong α emission, which would cause excessive ...
Figure 6:Reaction Coordinate Diagrams showing reactions with 0, 1 and 2 intermediates: The double-headed arrow shows the first, second and third step in each reaction coordinate diagram. In all three of these reactions the first step is the slow step because the activation energy from the reactants to the transition state is the highest.
Curium(III) chloride can be obtained from the reaction of hydrogen chloride gas with curium dioxide, curium(III) oxide, or curium(III) oxychloride at a temperature of 400-600 °C: CmOCl + 2HCl → CmCl 3 + H 2 O. It can also be obtained from the dissolution of metallic curium in dilute hydrochloric acid: [2] 2Cm + 6HCl → 2CmCl 3 + 3H 2