When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Motion planning - Wikipedia

    en.wikipedia.org/wiki/Motion_planning

    A basic motion planning problem is to compute a continuous path that connects a start configuration S and a goal configuration G, while avoiding collision with known obstacles. The robot and obstacle geometry is described in a 2D or 3D workspace , while the motion is represented as a path in (possibly higher-dimensional) configuration space .

  3. Real-time path planning - Wikipedia

    en.wikipedia.org/wiki/Real-time_path_planning

    Real-Time Path Planning is a term used in robotics that consists of motion planning methods that can adapt to real time changes in the environment. This includes everything from primitive algorithms that stop a robot when it approaches an obstacle to more complex algorithms that continuously takes in information from the surroundings and creates a plan to avoid obstacles.

  4. Real-time Control System - Wikipedia

    en.wikipedia.org/wiki/Real-time_Control_System

    A reference model architecture is a canonical form, not a system design specification. The RCS reference model architecture combines real-time motion planning and control with high level task planning, problem solving, world modeling, recursive state estimation, tactile and visual image processing, and acoustic signature analysis.

  5. Control system - Wikipedia

    en.wikipedia.org/wiki/Control_system

    The definition of a closed loop control system according to the British Standards Institution is "a control system possessing monitoring feedback, the deviation signal formed as a result of this feedback being used to control the action of a final control element in such a way as to tend to reduce the deviation to zero." [2]

  6. Trajectory optimization - Wikipedia

    en.wikipedia.org/wiki/Trajectory_optimization

    Depending on the configuration, open-chain robotic manipulators require a degree of trajectory optimization. For instance, a robotic arm with 7 joints and 7 links (7-DOF) is a redundant system where one cartesian position of an end-effector can correspond to an infinite number of joint angle positions, thus this redundancy can be used to optimize a trajectory to, for example, avoid any ...

  7. Category:Path planning - Wikipedia

    en.wikipedia.org/wiki/Category:Path_planning

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us

  8. Any-angle path planning - Wikipedia

    en.wikipedia.org/wiki/Any-angle_path_planning

    Any-angle path planning algorithms are pathfinding algorithms that search for a Euclidean shortest path between two points on a grid map while allowing the turns in the path to have any angle. The result is a path that cuts directly through open areas and has relatively few turns. [ 1 ]

  9. Feed forward (control) - Wikipedia

    en.wikipedia.org/wiki/Feed_forward_(control)

    A pure feed-forward system is different from a homeostatic control system, which has the function of keeping the body's internal environment 'steady' or in a 'prolonged steady state of readiness.' A homeostatic control system relies mainly on feedback (especially negative), in addition to the feedforward elements of the system.