When.com Web Search

  1. Ads

    related to: geometry formulas cones

Search results

  1. Results From The WOW.Com Content Network
  2. Cone - Wikipedia

    en.wikipedia.org/wiki/Cone

    The axis of a cone is the straight line passing through the apex about which the cone has a circular symmetry. In common usage in elementary geometry, cones are assumed to be right circular, i.e., with a circle base perpendicular to the axis. [1] If the cone is right circular the intersection of a plane with the lateral surface is a conic section.

  3. List of formulas in elementary geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Area#Area formulas – Size of a two-dimensional surface; Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities

  4. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.

  5. Conical surface - Wikipedia

    en.wikipedia.org/wiki/Conical_surface

    An elliptic cone, a special case of a conical surface, shown truncated for simplicity. In geometry, a conical surface is an unbounded three-dimensional surface formed from the union of infinite lines that pass through a fixed point and a space curve.

  6. Frustum - Wikipedia

    en.wikipedia.org/wiki/Frustum

    In geometry, a frustum (Latin for 'morsel'); [a] (pl.: frusta or frustums) is the portion of a solid (normally a pyramid or a cone) that lies between two parallel planes cutting the solid. In the case of a pyramid, the base faces are polygonal and the side faces are trapezoidal.

  7. Spherical sector - Wikipedia

    en.wikipedia.org/wiki/Spherical_sector

    In geometry, a spherical sector, [1] also known as a spherical cone, [2] is a portion of a sphere or of a ball defined by a conical boundary with apex at the center of the sphere. It can be described as the union of a spherical cap and the cone formed by the center of the sphere and the base of the cap.

  8. Cavalieri's principle - Wikipedia

    en.wikipedia.org/wiki/Cavalieri's_principle

    As can be seen, the area of the circle defined by the intersection with the sphere of a horizontal plane located at any height equals the area of the intersection of that plane with the part of the cylinder that is "outside" of the cone; thus, applying Cavalieri's principle, it could be said that the volume of the half sphere equals the volume ...

  9. Hypercone - Wikipedia

    en.wikipedia.org/wiki/Hypercone

    In geometry, a hypercone (or spherical cone) is the figure in the 4-dimensional Euclidean space represented by the equation x 2 + y 2 + z 2 − w 2 = 0. {\displaystyle x^{2}+y^{2}+z^{2}-w^{2}=0.} It is a quadric surface, and is one of the possible 3- manifolds which are 4-dimensional equivalents of the conical surface in 3 dimensions.