When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Decimal data type - Wikipedia

    en.wikipedia.org/wiki/Decimal_data_type

    C# has a built-in data type decimal consisting of 128 bits resulting in 28–29 significant digits. It has an approximate range of ±1.0 × 10 −28 to ±7.9228 × 10 28. [1] Starting with Python 2.4, Python's standard library includes a Decimal class in the module decimal. [2] Ruby's standard library includes a BigDecimal class in the module ...

  3. Decimal floating point - Wikipedia

    en.wikipedia.org/wiki/Decimal_floating_point

    The leading 2 bits of the exponent and the leading digit (3 or 4 bits) of the significand are combined into the five bits that follow the sign bit. This is followed by a fixed-offset exponent continuation field. Finally, the significand continuation field made of 2, 5, or 11 10-bit declets, each encoding 3 decimal digits. [8]

  4. IEEE 754-2008 revision - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-2008_revision

    The particular sets known as basic formats are defined, and the encodings used for interchange of binary and decimal formats are explained. The binary interchange formats have the " half precision " (16-bit storage format) and " quad precision " (128-bit format) added, together with generalized formulae for some wider formats; the basic formats ...

  5. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    The existing 64- and 128-bit formats follow this rule, but the 16- and 32-bit formats have more exponent bits (5 and 8 respectively) than this formula would provide (3 and 7 respectively). As with IEEE 754-1985, the biased-exponent field is filled with all 1 bits to indicate either infinity (trailing significand field = 0) or a NaN (trailing ...

  6. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    The "decimal" data type of the C# and Python programming languages, and the decimal formats of the IEEE 754-2008 standard, are designed to avoid the problems of binary floating-point representations when applied to human-entered exact decimal values, and make the arithmetic always behave as expected when numbers are printed in decimal.

  7. Quadruple-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Quadruple-precision...

    This gives from 33 to 36 significant decimal digits precision. If a decimal string with at most 33 significant digits is converted to the IEEE 754 quadruple-precision format, giving a normal number, and then converted back to a decimal string with the same number of digits, the final result should match the original string.

  8. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    Thus only 23 fraction bits of the significand appear in the memory format, but the total precision is 24 bits (equivalent to log 10 (2 24) ≈ 7.225 decimal digits) for normal values; subnormals have gracefully degrading precision down to 1 bit for the smallest non-zero value. The bits are laid out as follows:

  9. NaN - Wikipedia

    en.wikipedia.org/wiki/NaN

    For decimal interchange formats, whether binary or decimal encoded, a NaN is identified by having the top five bits of the combination field after the sign bit set to ones. The sixth bit of the field is the is_signaling flag. That is, this bit is zero if the NaN is quiet, and non-zero if the NaN is signaling. [16]