Search results
Results From The WOW.Com Content Network
The thyrotropin receptor (or TSH receptor) is a receptor (and associated protein) that responds to thyroid-stimulating hormone (also known as "thyrotropin") and stimulates the production of thyroxine (T4) and triiodothyronine (T3).
The thyrotropin receptor (TSH receptor) is the antigen for TSH receptor antibodies (TRAbs). It is a seven transmembrane G protein-coupled receptor that is involved in thyroid hormone signalling. TRAbs are grouped depending on their effects on receptor signalling; activating antibodies (associated with hyperthyroidism), blocking antibodies ...
Thyroid-stimulating hormone (also known as thyrotropin, thyrotropic hormone, or abbreviated TSH) is a pituitary hormone that stimulates the thyroid gland to produce thyroxine (T 4), and then triiodothyronine (T 3) which stimulates the metabolism of almost every tissue in the body. [1]
In a healthy individual, the TR-β2 expressed in the pituitary gland plays a major role in regulating thyroid-stimulating hormone (TSH) levels through negative feedback. TSH stimulates the thyroid to secrete thyroid hormone. Once secreted, thyroid hormone acts on these receptors and inhibits transcription of Tshb. This feedback inhibition stops ...
Thyroid-stimulating hormone (TSH) released from the anterior pituitary (also known as the adenohypophysis) binds the TSH receptor (a G s protein-coupled receptor) on the basolateral membrane of the cell and stimulates the endocytosis of the colloid. The endocytosed vesicles fuse with the lysosomes of the follicular cell.
TRH binds to a class A G protein-coupled receptor on the surface of a thyrotropic cell, which is known as the thyrotropin-releasing hormone receptor (TRHR). Strong hydrogen bonding interactions stabilize the binding of TRH to TRHR.
Thyrotropin-releasing hormone (TRH) is a hypophysiotropic hormone produced by neurons in the hypothalamus that stimulates the release of thyroid-stimulating hormone (TSH) and prolactin from the anterior pituitary. TRH has been used clinically for the treatment of spinocerebellar degeneration and disturbance of consciousness in humans. [1]
The TSH, in turn, stimulates the thyroid to produce thyroid hormone until levels in the blood return to normal. Thyroid hormone exerts negative feedback control over the hypothalamus as well as anterior pituitary, thus controlling the release of both TRH from hypothalamus and TSH from anterior pituitary gland.