Search results
Results From The WOW.Com Content Network
Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.
This equation should not be used for computations using floating point arithmetic, because it suffers from catastrophic cancellation if the two components of the equation are similar in magnitude. For other numerically stable alternatives, see algorithms for calculating variance.
Schematic of Jackknife Resampling. In statistics, the jackknife (jackknife cross-validation) is a cross-validation technique and, therefore, a form of resampling.It is especially useful for bias and variance estimation.
Firstly, while the sample variance (using Bessel's correction) is an unbiased estimator of the population variance, its square root, the sample standard deviation, is a biased estimate of the population standard deviation; because the square root is a concave function, the bias is downward, by Jensen's inequality.
In spatial statistics the theoretical variogram, denoted (,), is a function describing the degree of spatial dependence of a spatial random field or stochastic process (). ...
The variance of randomly generated points within a unit square can be reduced through a stratification process. In mathematics , more specifically in the theory of Monte Carlo methods , variance reduction is a procedure used to increase the precision of the estimates obtained for a given simulation or computational effort. [ 1 ]
In statistics, the variance function is a smooth function that depicts the variance of a random quantity as a function of its mean.The variance function is a measure of heteroscedasticity and plays a large role in many settings of statistical modelling.
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...