Search results
Results From The WOW.Com Content Network
The np.pad(...) routine to extend arrays actually creates new arrays of the desired shape and padding values, copies the given array into the new one and returns it. NumPy's np.concatenate([a1,a2]) operation does not actually link the two arrays but returns a new one, filled with the entries from both given arrays in sequence.
Illustration of difference between row- and column-major ordering. In computing, row-major order and column-major order are methods for storing multidimensional arrays in linear storage such as random access memory. The difference between the orders lies in which elements of an array are contiguous in memory.
A two-dimensional array stored as a one-dimensional array of one-dimensional arrays (rows) Many languages support only one-dimensional arrays. In those languages, a multi-dimensional array is typically represented by an Iliffe vector, a one-dimensional array of references to arrays of one dimension less. A two-dimensional array, in particular ...
For example, to perform an element by element sum of two arrays, a and b to produce a third c, it is only necessary to write c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x)
For example, if d = gcd(N,M) is not small, one can perform the transposition using a small amount (NM/d) of additional storage, with at most three passes over the array (Alltop, 1975; Dow, 1995). Two of the passes involve a sequence of separate, small transpositions (which can be performed efficiently out of place using a small buffer) and one ...
A two-dimensional array stored as a one-dimensional array of one-dimensional arrays (rows). An Iliffe vector is an alternative to a multidimensional array structure. It uses a one-dimensional array of references to arrays of one dimension less. For two dimensions, in particular, this alternative structure would be a vector of pointers to ...
Pairwise summation is the default summation algorithm in NumPy [9] and the Julia technical-computing language, [10] where in both cases it was found to have comparable speed to naive summation (thanks to the use of a large base case).
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop: