Ad
related to: how to determine computer architecture
Search results
Results From The WOW.Com Content Network
The first documented computer architecture was in the correspondence between Charles Babbage and Ada Lovelace, describing the analytical engine.While building the computer Z1 in 1936, Konrad Zuse described in two patent applications for his future projects that machine instructions could be stored in the same storage used for data, i.e., the stored-program concept.
In computer architecture, cycles per instruction (aka clock cycles per instruction, clocks per instruction, or CPI) is one aspect of a processor's performance: the average number of clock cycles per instruction for a program or program fragment. [1] It is the multiplicative inverse of instructions per cycle.
In computer science, Average Memory Access Time (AMAT) is a common metric to analyze computer memory system performance. Metric. AMAT uses hit time, miss penalty ...
An instruction set architecture (ISA) is an abstract model of a computer, also referred to as computer architecture.A realization of an ISA is called an implementation.An ISA permits multiple implementations that may vary in performance, physical size, and monetary cost (among other things); because the ISA serves as the interface between software and hardware.
The useful work that can be done with any computer depends on many factors besides the processor speed. These factors include the instruction set architecture, the processor's microarchitecture, and the computer system organization (such as the design of the disk storage system and the capabilities and performance of other attached devices), the efficiency of the operating system, and the high ...
In computer science, an instruction set architecture (ISA) is an abstract model that generally defines how software controls the CPU in a computer or a family of computers. [1] A device or program that executes instructions described by that ISA, such as a central processing unit (CPU), is called an implementation of that ISA.
Early computers often worked lock-step with their main memory, which reduced the advantages of large register files. A common design note from the minicomputer market of the 1960s was to have the registers be physically implemented in main memory, in which case the performance advantage was simply that the instruction could directly refer to the location rather than having to use a second byte ...
The instruction cycle (also known as the fetch–decode–execute cycle, or simply the fetch–execute cycle) is the cycle that the central processing unit (CPU) follows from boot-up until the computer has shut down in order to process instructions. It is composed of three main stages: the fetch stage, the decode stage, and the execute stage.