When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Biot number - Wikipedia

    en.wikipedia.org/wiki/Biot_number

    A temperature distribution chart with Bi on the x-axis. The Biot number (Bi) is a dimensionless quantity used in heat transfer calculations, named for the eighteenth-century French physicist Jean-Baptiste Biot (1774–1862).

  3. Internal resistance - Wikipedia

    en.wikipedia.org/wiki/Internal_resistance

    Internal resistance depends on temperature; for example, a fresh Energizer E91 AA alkaline primary battery drops from about 0.9 Ω at -40 °C, when the low temperature reduces ion mobility, to about 0.15 Ω at room temperature and about 0.1 Ω at 40 °C. [1]

  4. Thermal conductance and resistance - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductance_and...

    The SI unit of absolute thermal resistance is kelvins per watt (K/W) or the equivalent degrees Celsius per watt (°C/W) – the two are the same since the intervals are equal: ΔT = 1 K = 1 °C. The thermal resistance of materials is of great interest to electronic engineers because most electrical components generate heat and need to be cooled.

  5. Thermal conductivity and resistivity - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductivity_and...

    Only momentum non-conserving processes can cause thermal resistance. [52] At high temperatures (T > Θ), the mean free path and therefore λ L has a temperature dependence T −1, to which one arrives from formula / by making the following approximation , < [clarification needed] and writing = /.

  6. Thermistor - Wikipedia

    en.wikipedia.org/wiki/Thermistor

    Over small changes in temperature, if the right semiconductor is used, the resistance of the material is linearly proportional to the temperature. There are many different semiconducting thermistors with a range from about 0.01 kelvin to 2,000 kelvins (−273.14 °C to 1,700 °C).

  7. Heisler chart - Wikipedia

    en.wikipedia.org/wiki/Heisler_Chart

    These first Heisler–Gröber charts were based upon the first term of the exact Fourier series solution for an infinite plane wall: (,) = = [⁡ + ⁡ ⁡], [1]where T i is the initial uniform temperature of the slab, T ∞ is the constant environmental temperature imposed at the boundary, x is the location in the plane wall, λ is the root of λ * tan λ = Bi, and α is thermal diffusivity.

  8. Resistance thermometer - Wikipedia

    en.wikipedia.org/wiki/Resistance_thermometer

    Copper has a very linear resistancetemperature relationship; however, copper oxidizes at moderate temperatures and cannot be used over 150 °C (302 °F). [citation needed] The significant characteristic of metals used as resistive elements is the linear approximation of the resistance versus temperature relationship between 0 and 100 °C.

  9. Electrical resistivity and conductivity - Wikipedia

    en.wikipedia.org/wiki/Electrical_resistivity_and...

    At high temperatures, the resistance of a metal increases linearly with temperature. As the temperature of a metal is reduced, the temperature dependence of resistivity follows a power law function of temperature. Mathematically the temperature dependence of the resistivity ρ of a metal can be approximated through the Bloch–Grüneisen ...