When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Incircle and excircles - Wikipedia

    en.wikipedia.org/wiki/Incircle_and_excircles

    An excircle or escribed circle [2] of the triangle is a circle lying outside the triangle, tangent to one of its sides, and tangent to the extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the triangle's sides.

  3. Malfatti circles - Wikipedia

    en.wikipedia.org/wiki/Malfatti_circles

    A circle that is tangent to two sides of a triangle, as the Malfatti circles are, must be centered on one of the angle bisectors of the triangle (green in the figure). These bisectors partition the triangle into three smaller triangles, and Steiner's construction of the Malfatti circles begins by drawing a different triple of circles (shown ...

  4. Circular triangle - Wikipedia

    en.wikipedia.org/wiki/Circular_triangle

    Circular triangles give the solution to an isoperimetric problem in which one seeks a curve of minimum length that encloses three given points and has a prescribed area. . When the area is at least as large as the circumcircle of the points, the solution is any circle of that area surrounding the poi

  5. Circumcircle - Wikipedia

    en.wikipedia.org/wiki/Circumcircle

    The useful minimum bounding circle of three points is defined either by the circumcircle (where three points are on the minimum bounding circle) or by the two points of the longest side of the triangle (where the two points define a diameter of the circle). It is common to confuse the minimum bounding circle with the circumcircle.

  6. Mixtilinear incircles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Mixtilinear_incircles_of_a...

    In plane geometry, a mixtilinear incircle of a triangle is a circle which is tangent to two of its sides and internally tangent to its circumcircle. The mixtilinear incircle of a triangle tangent to the two sides containing vertex is called the -mixtilinear incircle.

  7. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    SAS Postulate: Two sides in a triangle have the same length as two sides in the other triangle, and the included angles have the same measure. ASA: Two interior angles and the side between them in a triangle have the same measure and length, respectively, as those in the other triangle. (This is the basis of surveying by triangulation.)

  8. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    Thales’ theorem: if AC is a diameter and B is a point on the diameter's circle, the angle ∠ ABC is a right angle.. In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ∠ ABC is a right angle.

  9. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    Another approach is to split the triangle into two right-angled triangles. For example, take the Case 3 example where b, c, and B are given. Construct the great circle from A that is normal to the side BC at the point D. Use Napier's rules to solve the triangle ABD: use c and B to find the sides AD and BD and the angle ∠BAD.