Search results
Results From The WOW.Com Content Network
An answer to the P versus NP question would determine whether problems that can be verified in polynomial time can also be solved in polynomial time. If P ≠ NP, which is widely believed, it would mean that there are problems in NP that are harder to compute than to verify: they could not be solved in polynomial time, but the answer could be ...
The program is solvable in polynomial time if the graph has all undirected or all directed edges. Variants include the rural postman problem. [3]: ND25, ND27 Clique cover problem [2] [3]: GT17 Clique problem [2] [3]: GT19 Complete coloring, a.k.a. achromatic number [3]: GT5 Cycle rank; Degree-constrained spanning tree [3]: ND1
However, unless P=NP, any polynomial-time algorithm must asymptotically be wrong on more than polynomially many of the exponentially many inputs of a certain size. [14] "If P=NP, all cryptographic ciphers can be broken." A polynomial-time problem can be very difficult to solve in practice if the polynomial's degree or constants are large enough.
For example, x²-6 is a polynomial with integer coefficients, since 1 and -6 are integers. The roots of x²-6=0 are x=√6 and x=-√6, so that means √6 and -√6 are algebraic numbers.
Polynomials can be classified by the number of terms with nonzero coefficients, so that a one-term polynomial is called a monomial, [d] a two-term polynomial is called a binomial, and a three-term polynomial is called a trinomial. A real polynomial is a polynomial with real coefficients.
Coefficient: An expression multiplying one of the monomials of the polynomial. Root (or zero) of a polynomial: Given a polynomial p(x), the x values that satisfy p(x) = 0 are called roots (or zeroes) of the polynomial p. Graphing. End behaviour – Concavity – Orientation – Tangency point – Inflection point – Point where concavity changes.
The subtraction of only multiples of 2 from the maximal number of positive roots occurs because the polynomial may have nonreal roots, which always come in pairs since the rule applies to polynomials whose coefficients are real. Thus if the polynomial is known to have all real roots, this rule allows one to find the exact number of positive and ...
The answer to the decision problem for the existential theory of the reals, given this sentence as input, is the Boolean value true. The inequality of arithmetic and geometric means states that, for every two non-negative numbers x {\displaystyle x} and y {\displaystyle y} , the following inequality holds: x + y 2 ≥ x y . {\displaystyle ...