Ad
related to: real world polynomial examples with solution
Search results
Results From The WOW.Com Content Network
In this case, the proof shows that a solution of Sudoku in polynomial time could also be used to complete Latin squares in polynomial time. [12] This in turn gives a solution to the problem of partitioning tri-partite graphs into triangles, [ 13 ] which could then be used to find solutions for the special case of SAT known as 3-SAT, [ 14 ...
Remains NP-complete for 3-sets. Solvable in polynomial time for 2-sets (this is a matching). [2] [3]: SP2 Finding the global minimum solution of a Hartree-Fock problem [37] Upward planarity testing [8] Hospitals-and-residents problem with couples; Knot genus [38]
A real polynomial is a polynomial with real coefficients. When it is used to define a function, ... for example, the unique solution of 2x − 1 = 0 is 1/2. This is, ...
On the one hand, there are many problems that have a solution space just as large, but can be solved in polynomial time (for example minimum spanning tree). On the other hand, there are NP-problems with at most one solution that are NP-hard under randomized polynomial-time reduction (see Valiant–Vazirani theorem).
A natural example of such a question concerning positive-dimensional systems is the following: decide if a polynomial system over the rational numbers has a finite number of real solutions and compute them. A generalization of this question is find at least one solution in each connected component of the set of real solutions of a polynomial ...
This can be proved as follows. First, if r is a root of a polynomial with real coefficients, then its complex conjugate is also a root. So the non-real roots, if any, occur as pairs of complex conjugate roots. As a cubic polynomial has three roots (not necessarily distinct) by the fundamental theorem of algebra, at least one root must be real.
It follows that all polynomial equations of degree 1 or more with real coefficients have a complex solution. On the other hand, an equation such as x 2 + 1 = 0 {\displaystyle x^{2}+1=0} does not have a solution in R {\displaystyle \mathbb {R} } (the solutions are the imaginary units i and –i ).
In other words, a solution is a value or a collection of values (one for each unknown) such that, when substituted for the unknowns, the equation becomes an equality. A solution of an equation is often called a root of the equation, particularly but not only for polynomial equations. The set of all solutions of an equation is its solution set.