Search results
Results From The WOW.Com Content Network
Maneuvering planes, showing oblique and vertical turns. Maneuvers are rarely performed in the strictly vertical or horizontal planes. Most turns contain some degree of "pitch" or "slice". During a turn in an oblique plane, a pitch turn occurs when the aircraft's nose points above the horizon, causing an increase in altitude.
The pilot uses the yoke to control the attitude of the plane, usually in both pitch and roll. Rotating the control wheel controls the ailerons and the roll axis. Fore and aft movement of the control column controls the elevator and the pitch axis. [1] When the yoke is pulled back, the nose of the aircraft rises.
A US certification standard for civil airplanes up to 12,500 lb (5,700 kg) maximum takeoff weight is Part 23 of the Federal Aviation Regulations, applicable to airplanes in the normal, utility and acrobatic categories. Part 23, §23.221 requires that single-engine airplanes must demonstrate recovery from either a one-turn spin if intentional ...
Aircraft flight mechanics are relevant to fixed wing (gliders, aeroplanes) and rotary wing (helicopters) aircraft.An aeroplane (airplane in US usage), is defined in ICAO Document 9110 as, "a power-driven heavier than air aircraft, deriving its lift chiefly from aerodynamic reactions on surface which remain fixed under given conditions of flight".
A raised aileron reduces lift on that wing and a lowered one increases lift, so moving the aileron control in this way causes the left wing to drop and the right wing to rise. This causes the aircraft to roll to the left and begin to turn to the left. Centering the control returns the ailerons to the neutral position, maintaining the bank angle ...
Entry procedure for a steep turn involves putting the aircraft into a bank (left or right), simultaneously increasing the thrust adequately to maintain altitude, while pulling back on the flight stick or flight yoke to speed up the turning process. For Jet training an increase of 7-8% of N1 caters.
Planes can withstand the weather. Next time you’re flying through turbulence, look out the window at the wing. You’ll notice it flexing. It’s supposed to do that.
The delay between the end of the firing cycle and the arrival of the next firing impulse slowed the rate of fire in comparison with a free-firing machine gun, which fires the moment it is ready to do so; but provided the gear functioned correctly, the gun could fire fairly rapidly between the whirling propeller blades without striking them. [7]