Search results
Results From The WOW.Com Content Network
An aircraft moves at any given moment in one or more of three axes: roll (the axis that runs the length of the fuselage), pitch (the axis running laterally through the wings), and yaw (the vertical axis around which the front of the aircraft turns to the left or right whilst its rear turns toward the opposite direction).
The result is twofold: the nose of the airplane drops below the horizon, and the bank angle increases due to rudder roll. Reacting to these unintended changes, the pilot then begins to pull the elevator control aft (thus increasing the angle of attack and load factor) while applying opposite aileron to decrease bank angle.
Entry procedure for a steep turn involves putting the aircraft into a bank (left or right), simultaneously increasing the thrust adequately to maintain altitude, while pulling back on the flight stick or flight yoke to speed up the turning process. For Jet training an increase of 7-8% of N1 caters.
The pilot uses the yoke to control the attitude of the plane, usually in both pitch and roll. Rotating the control wheel controls the ailerons and the roll axis. Fore and aft movement of the control column controls the elevator and the pitch axis. [1] When the yoke is pulled back, the nose of the aircraft rises.
A raised aileron reduces lift on that wing and a lowered one increases lift, so moving the aileron control in this way causes the left wing to drop and the right wing to rise. This causes the aircraft to roll to the left and begin to turn to the left. Centering the control returns the ailerons to the neutral position, maintaining the bank angle ...
For an aircraft that is symmetric from right-to-left, the frames can be defined as: Body frame Origin - airplane center of gravity; x b axis - positive out the nose of the aircraft in the plane of symmetry of the aircraft; z b axis - perpendicular to the x b axis, in the plane of symmetry of the aircraft, positive below the aircraft
In aerobatics, the cobra maneuver (or just the cobra), also called dynamic deceleration, [1] among other names (see § Etymology), is a dramatic and demanding maneuver in which an airplane flying at a moderate speed abruptly raises its nose momentarily to a vertical and slightly past vertical attitude, causing an extremely high angle of attack and making the plane into a full-body air brake ...
This asymmetric thrust causes the airplane to pull to the right and the pilot uses left rudder to compensate. The fact that the left-right pull tendency reverses when descending, shows that differences in angle of attack on the left and right sides of the prop overwhelm other effects like the spiral slipstream.