Search results
Results From The WOW.Com Content Network
If the magnetic field is constant, the magnetic flux passing through a surface of vector area S is = = , where B is the magnitude of the magnetic field (the magnetic flux density) having the unit of Wb/m 2 , S is the area of the surface, and θ is the angle between the magnetic field lines and the normal (perpendicular) to S.
magnetic flux density, magnetic induction: tesla: T = Wb/m 2 = N⋅A −1 ⋅m −1: kg⋅s −2 ⋅A −1: Φ, Φ M, Φ B magnetic flux: weber: Wb = V⋅s kg⋅m 2 ⋅s −2 ⋅A −1: H magnetic field strength ampere per metre: A/m A⋅m −1: F magnetomotive force: ampere: A = Wb/H A R magnetic reluctance: inverse henry: H −1 = A/Wb kg − ...
In this experiment, a static magnetic field runs through a long magnetic wire (e.g., an iron wire magnetized longitudinally). Outside of this wire the magnetic induction is zero, in contrast to the vector potential, which essentially depends on the magnetic flux through the cross-section of the wire and does not vanish outside.
The magnetic moment of an object is an intrinsic property and does not change with distance, and thus can be used to measure "how strong" a magnet is. For example, Earth possesses an enormous magnetic moment, however we are very distant from its center and experience only a tiny magnetic flux density (measured in tesla ) on its surface.
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
Magnetic induction B (also known as magnetic flux density) has the SI unit tesla [T or Wb/m 2]. [1] One tesla is equal to 10 4 gauss. Magnetic field drops off as the inverse cube of the distance ( 1 / distance 3 ) from a dipole source. Energy required to produce laboratory magnetic fields increases with the square of magnetic field. [2]
The gauss is the unit of magnetic flux density B in the system of Gaussian units and is equal to Mx/cm 2 or g/Bi/s 2, while the oersted is the unit of H-field. One tesla (T) corresponds to 10 4 gauss, and one ampere (A) per metre corresponds to 4π × 10 −3 oersted .
where is the time average power loss per unit volume in mW per cubic centimeter, is frequency in kilohertz, and is the peak magnetic flux density; , , and , called the Steinmetz coefficients, are material parameters generally found empirically from the material's B-H hysteresis curve by curve fitting. In typical magnetic materials, the ...