Ads
related to: coefficient of variation elisaacrobiosystems.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
In probability theory and statistics, the coefficient of variation (CV), also known as normalized root-mean-square deviation (NRMSD), percent RMS, and relative standard deviation (RSD), is a standardized measure of dispersion of a probability distribution or frequency distribution.
In statistics, McKay's approximation of the coefficient of variation is a statistic based on a sample from a normally distributed population. It was introduced in 1932 by A. T. McKay. [1] Statistical methods for the coefficient of variation often utilizes McKay's approximation. [2] [3] [4] [5]
Difference between ANOVA and Kruskal–Wallis test with ranks. The Kruskal–Wallis test by ranks, Kruskal–Wallis test (named after William Kruskal and W. Allen Wallis), or one-way ANOVA on ranks is a non-parametric statistical test for testing whether samples originate from the same distribution.
Coefficient of variation (CV) used as a measure of income inequality is conducted by dividing the standard deviation of the income (square root of the variance of the incomes) by the mean of income. Coefficient of variation will be therefore lower in countries with smaller standard deviations implying more equal income distribution.
In this case efficiency can be defined as the square of the coefficient of variation, i.e., [13] e ≡ ( σ μ ) 2 {\displaystyle e\equiv \left({\frac {\sigma }{\mu }}\right)^{2}} Relative efficiency of two such estimators can thus be interpreted as the relative sample size of one required to achieve the certainty of the other.
The coefficient of determination, denoted R 2 and pronounced R squared, is the proportion of total variation of outcomes explained by a statistical model. The coefficient of variation (CV) is a normalized measure of dispersion of a probability distribution or frequency distribution.
An alternative definition of SNR is as the reciprocal of the coefficient of variation, i.e., the ratio of mean to standard deviation of a signal or measurement: [4] [5]
Variation varies between 0 and 1. Variation is 0 if and only if all cases belong to a single category. Variation is 1 if and only if cases are evenly divided across all categories. [1] In particular, the value of these standardized indices does not depend on the number of categories or number of samples.