When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ampère's force law - Wikipedia

    en.wikipedia.org/wiki/Ampère's_force_law

    The top wire carries a current I 2 through the magnetic field B 1, so (by the Lorentz force) the wire experiences a force F 12. (Not shown is the simultaneous process where the top wire makes a magnetic field which results in a force on the bottom wire.) In magnetostatics, the force of attraction or repulsion between two current-carrying wires ...

  3. Force between magnets - Wikipedia

    en.wikipedia.org/wiki/Force_between_magnets

    The magnetic pole model assumes that the magnetic forces between magnets are due to magnetic charges near the poles. This model works even close to the magnet when the magnetic field becomes more complicated, and more dependent on the detailed shape and magnetization of the magnet than just the magnetic dipole contribution.

  4. Ampère's circuital law - Wikipedia

    en.wikipedia.org/wiki/Ampère's_circuital_law

    [6] [7] He investigated and discovered the rules which govern the field around a straight current-carrying wire: [8] The magnetic field lines encircle the current-carrying wire. The magnetic field lines lie in a plane perpendicular to the wire. If the direction of the current is reversed, the direction of the magnetic field reverses.

  5. Lorentz force - Wikipedia

    en.wikipedia.org/wiki/Lorentz_force

    The magnetic force component of the Lorentz force manifests itself as the force that acts on a current-carrying wire in a magnetic field. In that context, it is also called the Laplace force . The Lorentz force is a force exerted by the electromagnetic field on the charged particle, that is, it is the rate at which linear momentum is ...

  6. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Lorentz force on a charged particle (of charge q) in motion (velocity v), used as the definition of the E field and B field. Here subscripts e and m are used to differ between electric and magnetic charges. The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths.

  7. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    In this experiment, a static magnetic field runs through a long magnetic wire (e.g., an iron wire magnetized longitudinally). Outside of this wire the magnetic induction is zero, in contrast to the vector potential, which essentially depends on the magnetic flux through the cross-section of the wire and does not vanish outside.

  8. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    The force on a current carrying wire is similar to that of a moving charge as expected since a current carrying wire is a collection of moving charges. A current-carrying wire feels a force in the presence of a magnetic field. The Lorentz force on a macroscopic current is often referred to as the Laplace force.

  9. Oersted's law - Wikipedia

    en.wikipedia.org/wiki/Oersted's_law

    The magnetic field (marked B, indicated by red field lines) around wire carrying an electric current (marked I) Compass and wire apparatus showing Ørsted's experiment (video [1]) In electromagnetism , Ørsted's law , also spelled Oersted's law , is the physical law stating that an electric current induces a magnetic field .