Search results
Results From The WOW.Com Content Network
The magnetic field of permanent magnets can be quite complicated, especially near the magnet. The magnetic field of a small [note 6] straight magnet is proportional to the magnet's strength (called its magnetic dipole moment m). The equations are non-trivial and depend on the distance from the magnet and the orientation of the magnet.
A magnetic field is a vector field, but if it is expressed in Cartesian components X, Y, Z, each component is the derivative of the same scalar function called the magnetic potential. Analyses of the Earth's magnetic field use a modified version of the usual spherical harmonics that differ by a multiplicative factor.
The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths. There are two possible units for monopole strength, Wb (Weber) and A m (Ampere metre). Dimensional analysis shows that magnetic charges relate by q m (Wb) = μ 0 q m (Am).
Similarly, if only the magnetic field (B) is non-zero and is constant in time, the field is said to be a magnetostatic field. However, if either the electric or magnetic field has a time-dependence, then both fields must be considered together as a coupled electromagnetic field using Maxwell's equations .
Magnetic pole model for H and Ampèrian loop model for B yield the identical field outside of a magnet. Inside they are very different. The field of a magnet is the sum of fields from all magnetized volume elements, which consist of small magnetic dipoles on an atomic level.
In the electric and magnetic field formulation there are four equations that determine the fields for given charge and current distribution. A separate law of nature, the Lorentz force law, describes how the electric and magnetic fields act on charged particles and currents. By convention, a version of this law in the original equations by ...
In physics, specifically electromagnetism, the Biot–Savart law (/ ˈ b iː oʊ s ə ˈ v ɑːr / or / ˈ b j oʊ s ə ˈ v ɑːr /) [1] is an equation describing the magnetic field generated by a constant electric current. It relates the magnetic field to the magnitude, direction, length, and proximity of the electric current.
The magnetization field or M-field can be defined according to the following equation: = Where d m {\displaystyle \mathrm {d} \mathbf {m} } is the elementary magnetic moment and d V {\displaystyle \mathrm {d} V} is the volume element ; in other words, the M -field is the distribution of magnetic moments in the region or manifold concerned.