When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.

  3. Dirichlet function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_function

    The Dirichlet function is not Riemann-integrable on any segment of despite being bounded because the set of its discontinuity points is not negligible (for the Lebesgue measure). The Dirichlet function provides a counterexample showing that the monotone convergence theorem is not true in the context of the Riemann integral.

  4. Macaulay brackets - Wikipedia

    en.wikipedia.org/wiki/Macaulay_brackets

    Macaulay's notation is commonly used in the static analysis of bending moments of a beam. This is useful because shear forces applied on a member render the shear and moment diagram discontinuous.

  5. Discontinuities of monotone functions - Wikipedia

    en.wikipedia.org/wiki/Discontinuities_of...

    Let be a real-valued monotone function defined on an interval. Then the set of discontinuities of the first kind is at most countable.. One can prove [5] [3] that all points of discontinuity of a monotone real-valued function defined on an interval are jump discontinuities and hence, by our definition, of the first kind.

  6. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    A point where a function is discontinuous is called a discontinuity. Using mathematical notation, several ways exist to define continuous functions in the three senses mentioned above. Let f : D → R {\displaystyle f:D\to \mathbb {R} } be a function defined on a subset D {\displaystyle D} of the set R {\displaystyle \mathbb {R} } of real numbers.

  7. Convergence of Fourier series - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_Fourier_series

    Even a jump discontinuity does not pose a problem: if the function has left and right derivatives at x, then the Fourier series converges to the average of the left and right limits (but see Gibbs phenomenon). The Dirichlet–Dini Criterion states that: [4] if ƒ is 2 π –periodic, locally integrable and satisfies

  8. Macaulay's method - Wikipedia

    en.wikipedia.org/wiki/Macaulay's_method

    Macaulay's method (the double integration method) is a technique used in structural analysis to determine the deflection of Euler-Bernoulli beams.Use of Macaulay's technique is very convenient for cases of discontinuous and/or discrete loading.

  9. Residue (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Residue_(complex_analysis)

    This formula can be very useful in determining the residues for low-order poles. For higher-order poles, the calculations can become unmanageable, and series expansion is usually easier. For essential singularities, no such simple formula exists, and residues must usually be taken directly from series expansions.