When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.

  3. Discontinuities of monotone functions - Wikipedia

    en.wikipedia.org/wiki/Discontinuities_of...

    Let be a real-valued monotone function defined on an interval. Then the set of discontinuities of the first kind is at most countable.. One can prove [5] [3] that all points of discontinuity of a monotone real-valued function defined on an interval are jump discontinuities and hence, by our definition, of the first kind.

  4. Sign function - Wikipedia

    en.wikipedia.org/wiki/Sign_function

    This counterexample confirms more formally the discontinuity of ⁡ at zero that is visible in the plot. Despite the sign function having a very simple form, the step change at zero causes difficulties for traditional calculus techniques, which are quite stringent in their requirements. Continuity is a frequent constraint.

  5. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    A point where a function is discontinuous is called a discontinuity. Using mathematical notation, several ways exist to define continuous functions in the three senses mentioned above. Let f : D → R {\displaystyle f:D\to \mathbb {R} } be a function defined on a subset D {\displaystyle D} of the set R {\displaystyle \mathbb {R} } of real numbers.

  6. Oscillation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Oscillation_(mathematics)

    in a removable discontinuity, the distance that the value of the function is off by is the oscillation; in a jump discontinuity, the size of the jump is the oscillation (assuming that the value at the point lies between these limits from the two sides); in an essential discontinuity, oscillation measures the failure of a limit to exist.

  7. Glossary of calculus - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_calculus

    Then, the point x 0 = 1 is a jump discontinuity. In this case, a single limit does not exist because the one-sided limits, L − and L +, exist and are finite, but are not equal: since, L − ≠ L +, the limit L does not exist. Then, x 0 is called a jump discontinuity, step discontinuity, or discontinuity of the first kind.

  8. Singularity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Singularity_(mathematics)

    This discontinuity, however, is only apparent; it is an artifact of the coordinate system chosen, which is singular at the poles. A different coordinate system would eliminate the apparent discontinuity (e.g., by replacing the latitude/longitude representation with an n-vector representation).

  9. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    Since the value at f(0) is a removable discontinuity, = for all a. Thus, the naïve chain rule would suggest that the limit of f ( f ( x )) is 0. However, it is the case that f ( f ( x ) ) = { 1 if x ≠ 0 0 if x = 0 {\displaystyle f(f(x))={\begin{cases}1&{\text{if }}x\neq 0\\0&{\text{if }}x=0\end{cases}}} and so lim x → a f ( f ( x ) ) = 1 ...