Search results
Results From The WOW.Com Content Network
The London moment (after Fritz London) is a quantum-mechanical phenomenon whereby a spinning superconductor generates a magnetic field whose axis lines up exactly with the spin axis. [1]
In condensed matter physics, a quantum spin liquid is a phase of matter that can be formed by interacting quantum spins in certain magnetic materials. Quantum spin liquids (QSL) are generally characterized by their long-range quantum entanglement, fractionalized excitations, and absence of ordinary magnetic order.
The Rashba effect, also called Bychkov–Rashba effect, is a momentum-dependent splitting of spin bands in bulk crystals [note 1] and low-dimensional condensed matter systems (such as heterostructures and surface states) similar to the splitting of particles and anti-particles in the Dirac Hamiltonian.
A superconductor can be Type I, meaning it has a single critical field, above which all superconductivity is lost and below which the magnetic field is completely expelled from the superconductor; or Type II, meaning it has two critical fields, between which it allows partial penetration of the magnetic field through isolated points. [32]
For crossed Andreev reflection to occur, electrons of opposite spin must exist at each normal electrode (so as to form the pair in the superconductor). If the normal material is a ferromagnet this may be guaranteed by creating opposite spin polarization via the application of a magnetic field to normal electrodes of differing coercivity.
Magnetic levitation can be stabilised using different techniques; here rotation (spin) is used. Magnetic levitation (maglev) or magnetic suspension is a method by which an object is suspended with no support other than magnetic fields. Magnetic force is used to counteract the effects of the gravitational force and any other forces. [2]
The experiment demonstrated for the first time that superconductors were more than just perfect conductors and provided a uniquely defining property of the superconductor state. The ability for the expulsion effect is determined by the nature of equilibrium formed by the neutralization within the unit cell of a superconductor.
Electrons have spin-1 ⁄ 2, so they are fermions, but the total spin of a Cooper pair is integer (0 or 1) so it is a composite boson. This means the wave functions are symmetric under particle interchange. Therefore, unlike electrons, multiple Cooper pairs are allowed to be in the same quantum state, which is responsible for the phenomenon of ...