Search results
Results From The WOW.Com Content Network
The word "bounded" makes no sense in a general topological space without a corresponding metric. Boundary is a distinct concept; for example, a circle (not to be confused with a disk) in isolation is a boundaryless bounded set, while the half plane is unbounded yet has a boundary. A bounded set is not necessarily a closed set and vice
The collection of all bounded sets on a topological vector space is called the von Neumann bornology or the (canonical) bornology of .. A base or fundamental system of bounded sets of is a set of bounded subsets of such that every bounded subset of is a subset of some . [1] The set of all bounded subsets of trivially forms a fundamental system of bounded sets of .
In topology and related branches of mathematics, total-boundedness is a generalization of compactness for circumstances in which a set is not necessarily closed.A totally bounded set can be covered by finitely many subsets of every fixed “size” (where the meaning of “size” depends on the structure of the ambient space).
The spectrum of any commutative ring with the Zariski topology (that is, the set of all prime ideals) is compact, but never Hausdorff (except in trivial cases). In algebraic geometry, such topological spaces are examples of quasi-compact schemes, "quasi" referring to the non-Hausdorff nature of the topology.
A bounded operator: is not a bounded function in the sense of this page's definition (unless =), but has the weaker property of preserving boundedness; bounded sets are mapped to bounded sets (). This definition can be extended to any function f : X → Y {\displaystyle f:X\rightarrow Y} if X {\displaystyle X} and Y {\displaystyle Y} allow for ...
If is the real line, or -dimensional Euclidean space, then a function has compact support if and only if it has bounded support, since a subset of is compact if and only if it is closed and bounded. For example, the function f : R → R {\displaystyle f:\mathbb {R} \to \mathbb {R} } defined above is a continuous function with compact support ...
If X is any set and M is a metric space, then the set of all bounded functions: (i.e. those functions whose image is a bounded subset of ) can be turned into a metric space by defining the distance between two bounded functions f and g to be (,) = ((), ()).
A closed n-ball of radius r is the set of all points of distance less than or equal to r away from x. In Euclidean n-space, every ball is bounded by a hypersphere. The ball is a bounded interval when n = 1, is a disk bounded by a circle when n = 2, and is bounded by a sphere when n = 3.