Search results
Results From The WOW.Com Content Network
It follows from the definition that every measurable subset of a positive or negative set is also positive or negative. Also, the union of a sequence of positive or negative sets is also positive or negative; more formally, if ,, … is a sequence of positive sets, then = is also a positive set; the same is true if the word "positive" is replaced by "negative".
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
What follows are two results which will imply that an extended signed measure is the difference of two non-negative measures, and a finite signed measure is the difference of two finite non-negative measures. The Hahn decomposition theorem states that given a signed measure μ, there exist two measurable sets P and N such that: P∪N = X and P ...
A measure that takes values in the set of self-adjoint projections on a Hilbert space is called a projection-valued measure; these are used in functional analysis for the spectral theorem. When it is necessary to distinguish the usual measures which take non-negative values from generalizations, the term positive measure is used.
Signed sets may be represented mathematically as an ordered pair of disjoint sets, one set for their positive elements and another for their negative elements. [1] Alternatively, they may be represented as a Boolean function , a function whose domain is the underlying unsigned set (possibly specified explicitly as a separate part of the ...
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
The set N of natural numbers is defined in this system as the smallest set containing 0 and closed under the successor function S defined by S(n) = n ∪ {n}. The structure N, 0, S is a model of the Peano axioms (Goldrei 1996). The existence of the set N is equivalent to the axiom of infinity in ZF set theory.