Search results
Results From The WOW.Com Content Network
Secondly, he found the charge-to-mass ratio of alpha particles to be half that of the hydrogen ion. Rutherford proposed three explanations: 1) an alpha particle is a hydrogen molecule (H 2) with a charge of 1 e; 2) an alpha particle is an atom of helium with a charge of 2 e; 3) an alpha particle is half a helium atom with a charge of 1 e.
Computing the total disintegration energy given by the equation = (), where m i is the initial mass of the nucleus, m f is the mass of the nucleus after particle emission, and m p is the mass of the emitted (alpha-)particle, one finds that in certain cases it is positive and so alpha particle emission is possible, whereas other decay modes ...
The alpha particle, or 4 He nucleus, is an especially strongly bound particle. This combined with the fact that the binding energy per nucleon has a maximum value near A=56 and systematically decreases for heavier nuclei, creates the situation that nuclei with A>150 have positive Q α-values for the emission of alpha particles.
Alpha particle emissions are generally produced in the process of alpha decay. Alpha particles are a strongly ionizing form of radiation, but when emitted by radioactive decay they have low penetration power and can be absorbed by a few centimeters of air, or by the top layer of human skin.
The following are among the principal radioactive materials known to emit alpha particles. 209 Bi , 211 Bi , 212 Bi , 213 Bi 210 Po , 211 Po , 212 Po , 214 Po , 215 Po , 216 Po , 218 Po
The alpha particle is an especially strongly bound nucleus, helping it win the competition more often. [ 57 ] : 872 However some nuclei break up or fission into larger particles and artificial nuclei decay with the emission of single protons, double protons, and other combinations.
The decay scheme of a radioactive substance is a graphical presentation of all the transitions occurring in a decay, and of their relationships. Examples are shown below. It is useful to think of the decay scheme as placed in a coordinate system, where the vertical axis is energy, increasing from bottom to top, and the horizontal axis is the proton number, increasing from left to right.
When the emitted particle is a proton, neutron, or alpha particle the fraction of the decay energy going to the particle is approximately / and the fraction going to the daughter nucleus /. [5] For neutrinos and gamma rays, the departing particle gets almost all the energy, the fraction going to the daughter nucleus being only / ().